Message-Passing Algorithms: Reparameterizations and Splittings

The max-product algorithm, a local message-passing scheme that attempts to compute the most probable assignment (MAP) of a given probability distribution, has been successfully employed as a method of approximate inference for applications arising in coding theory, computer vision, and machine learning. However, the max-product algorithm is not guaranteed to converge, and if it does, it is not guaranteed to recover the MAP assignment. Alternative convergent message-passing schemes have been proposed to overcome these difficulties. This paper provides a systematic study of such message-passing algorithms that extends the known results by exhibiting new sufficient conditions for convergence to local and/or global optima, providing a combinatorial characterization of these optima based on graph covers, and describing a new convergent and correct message-passing algorithm whose derivation unifies many of the known convergent message-passing algorithms. While convergent and correct message-passing algorithms represent a step forward in the analysis of max-product style message-passing algorithms, the conditions needed to guarantee convergence to a global optimum can be too restrictive in both theory and practice. This limitation of convergent and correct message-passing schemes is characterized by graph covers and illustrated by example.


Published in:
Ieee Transactions On Information Theory, 59, 9, 5860-5881
Year:
2013
Publisher:
Piscataway, Ieee-Inst Electrical Electronics Engineers Inc
ISSN:
0018-9448
Keywords:
Laboratories:




 Record created 2013-10-01, last modified 2018-03-17


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)