Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Type 5 Adenylyl Cyclase Increases Oxidative Stress by Transcriptional Regulation of Manganese Superoxide Dismutase via the SIRT1/FoxO3a Pathway
 
research article

Type 5 Adenylyl Cyclase Increases Oxidative Stress by Transcriptional Regulation of Manganese Superoxide Dismutase via the SIRT1/FoxO3a Pathway

Lai, Lo
•
Yan, Lin
•
Gao, Shumin
Show more
2013
Circulation

Background-For reasons that remain unclear, whether type 5 adenylyl cyclase (AC5), 1 of 2 major AC isoforms in heart, is protective or deleterious in response to cardiac stress is controversial. To reconcile this controversy we examined the cardiomyopathy induced by chronic isoproterenol in AC5 transgenic (Tg) mice and the signaling mechanisms involved. Methods and Results-Chronic isoproterenol increased oxidative stress and induced more severe cardiomyopathy in AC5 Tg, as left ventricular ejection fraction fell 1.9-fold more than wild type, along with greater left ventricular dilation and increased fibrosis, apoptosis, and hypertrophy. Oxidative stress induced by chronic isoproterenol, detected by 8-OhDG was 15% greater, P=0.007, in AC5 Tg hearts, whereas protein expression of manganese superoxide dismutase (MnSOD) was reduced by 38%, indicating that the susceptibility of AC5 Tg to cardiomyopathy may be attributable to decreased MnSOD expression. Consistent with this, susceptibility of the AC5 Tg to cardiomyopathy was suppressed by overexpression of MnSOD, whereas protection afforded by the AC5 knockout (KO) was lost in AC5 KOxMnSOD heterozyous KO mice. Elevation of MnSOD was eliminated by both sirtuin and MEK inhibitors, suggesting both the SIRT1/FoxO3a and MEK/ERK pathway are involved in MnSOD regulation by AC5. Conclusions-Overexpression of AC5 exacerbates the cardiomyopathy induced by chronic catecholamine stress by altering regulation of SIRT1/FoxO3a, MEK/ERK, and MnSOD, resulting in oxidative stress intolerance, thereby shedding light on new approaches for treatment of heart failure. (Circulation. 2013; 127:1692-1701.)

  • Details
  • Metrics
Type
research article
DOI
10.1161/Circulationaha.112.001212
Web of Science ID

WOS:000318031800011

Author(s)
Lai, Lo
Yan, Lin
Gao, Shumin
Hu, Che-Lin
Ge, Hui
Davidow, Amy
Park, Misun
Bravo, Claudio
Iwatsubo, Kousaku
Ishikawa, Yoshihiro
Show more
Date Issued

2013

Publisher

American Heart Association

Published in
Circulation
Volume

127

Issue

16

Start page

1692

End page

1701

Subjects

adenylyl

•

adrenergic receptors

•

cardiomyopathies

•

oxidative stress

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LISP  
Available on Infoscience
October 1, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/95485
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés