Direct and Retrograde Transduction of Nigral Neurons with AAV6, 8, and 9 and Intraneuronal Persistence of Viral Particles

Recombinant adeno-associated viral (AAV) vectors of serotypes 6, 8, and 9 were characterized as tools for gene delivery to dopaminergic neurons in the substantia nigra for future gene therapeutic applications in Parkinson's disease. While vectors of all three serotypes transduced nigral dopaminergic neurons with equal efficiency when directly injected to the substantia nigra, AAV6 was clearly superior to AAV8 and AAV9 for retrograde transduction of nigral neurons after striatal delivery. For sequential transduction of nigral dopaminergic neurons, the combination of AAV9 with AAV6 proved to be more powerful than AAV8 with AAV6 or repeated AAV6 administration. Surprisingly, single-stranded viral genomes persisted in nigral dopaminergic neurons within cell bodies and axon terminals in the striatum, and intact assembled AAV capsid was enriched in nuclei of nigral neurons, 4 weeks after virus injections to the substantia nigra. 6-Hydroxydopamine (6-OHDA)-induced degeneration of dopaminergic neurons in the substantia nigra reduced the number of viral genomes in the striatum, in line with viral genome persistence in axon terminals. However, 6-OHDA-induced axonal degeneration did not induce any transsynaptic spread of AAV infection in the striatum. Therefore, the potential presence of viral particles in axons may not represent an important safety issue for AAV gene therapy applications in neurodegenerative diseases.

Published in:
Human Gene Therapy, 24, 6, 613-629
New Rochelle, Mary Ann Liebert

 Record created 2013-10-01, last modified 2020-07-30

Rate this document:

Rate this document:
(Not yet reviewed)