Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Synthesis of Fixed-Point Programs
 
conference paper not in proceedings

Synthesis of Fixed-Point Programs

Darulova, Eva  
•
Kuncak, Viktor  orcid-logo
•
Saha, Indranil
Show more
2013
International Conference on Embedded Software (EMSOFT)

Several problems in the implementations of control systems, signal-processing systems, and scientific computing systems reduce to compiling a polynomial expression over the reals into an imperative program using fixed-point arithmetic. Fixed-point arithmetic only approximates real values, and its operators do not have the fundamental properties of real arithmetic, such as associativity. Consequently, a naive compilation process can yield a program that significantly deviates from the real polynomial, whereas a different order of evaluation can result in a program that is close to the real value on all inputs in its domain. We present a compilation scheme for real-valued arithmetic expressions to fixed-point arithmetic programs. Given a real-valued polynomial expression t, we find an expression t' that is equivalent to t over the reals, but whose implementation as a series of fixed-point operations minimizes the error between the fixed-point value and the value of t over the space of all inputs. We show that the corresponding decision problem, checking whether there is an implementation t' of t whose error is less than a given constant, is NP-hard. We then propose a solution technique based on genetic programming. Our technique evaluates the fitness of each candidate program using a static analysis based on affine arithmetic. We show that our tool can significantly reduce the error in the fixed-point implementation on a set of linear control system benchmarks. For example, our tool found implementations whose errors are only one half of the errors in the original fixed-point expressions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

SynthesisFixedpointPrograms.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

456.85 KB

Format

Adobe PDF

Checksum (MD5)

27f9f0219e27a021834d3faaa341074d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés