Temporal Motion Models for Monocular and Multiview 3–D Human Body Tracking

We explore an approach to 3D people tracking with learned motion models and deterministic optimization. The tracking problem is formulated as the minimization of a differ- entiable criterion whose differential structure is rich enough for optimization to be accom- plished via hill-climbing. This avoids the computational expense of Monte Carlo methods, while yielding good results under challenging conditions. To demonstrate the generality of the approach we show that we can learn and track cyclic motions such as walking and running, as well as acyclic motions such as a golf swing. We also show results from both monocular and multi-camera tracking. Finally, we provide results with a motion model learned from multiple activities, and show how this models might be used for recognition.


Publié dans:
Computer Vision and Image Understanding, 104, 2-3
Année
2006
Publisher:
Elsevier
ISSN:
1077-3142
Mots-clefs:
Laboratoires:




 Notice créée le 2013-07-19, modifiée le 2019-04-16

n/a:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)