Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Synergy-level Grasp Synthesis Learning
 
conference poster not in proceedings

Synergy-level Grasp Synthesis Learning

Li, Miao  
•
El Khoury, Sahar  
•
Billard, Aude  
2013
ICRA 2013

Autonomous grasping is a complex task for robots. It is a high dimensional problem since it involves controlling for the hand position, orientation and joint angles to successfully grasp an object. In order to reduce the control complexity, we adopt a 3-step approach. In the first step, we compute several stable grasps that are adapted to the robotic hand using an optimization technique. In a second step, we extract postural synergies from this grasping data, project the grasps into these synergies subspace, and use this data representation to learn a distribution of the feasible grasps. The third step uses the learned model to generate quickly new grasps for the given object. Our approach was validated on the four degrees of freedom Barrett hand.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

workshop_handsynergy.pdf

Access type

openaccess

Size

1.91 MB

Format

Adobe PDF

Checksum (MD5)

cdebde7d66409f8c1a4c9798ddc43525

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés