Sharing Data and Work Across Concurrent Analytical Queries

Today's data deluge enables organizations to collect massive data, and analyze it with an ever-increasing number of concurrent queries. Traditional data warehouses (DW) face a challenging problem in executing this task, due to their query-centric model: each query is optimized and executed independently. This model results in high contention for resources. Thus, modern DW depart from the query-centric model to execution models involving sharing of common data and work. Our goal is to show when and how a DW should employ sharing. We evaluate experimentally two sharing methodologies, based on their original prototype systems, that exploit work sharing opportunities among concurrent queries at run-time: Simultaneous Pipelining (SP), which shares intermediate results of common sub-plans, and Global Query Plans (GQP), which build and evaluate a single query plan with shared operators. First, after a short review of sharing methodologies, we show that SP and GQP are orthogonal techniques. SP can be applied to shared operators of a GQP, reducing response times by 20%-48% in workloads with numerous common sub-plans. Second, we corroborate previous results on the negative impact of SP on performance for cases of low concurrency. We attribute this behavior to a bottleneck caused by the push-based communication model of SP. We show that pull-based communication for SP eliminates the overhead of sharing altogether for low concurrency, and scales better on multi-core machines than push-based SP, further reducing response times by 82%-86% for high concurrency. Third, we perform an experimental analysis of SP, GQP and their combination, and show when each one is beneficial. We identify a trade-off between low and high concurrency. In the former case, traditional query-centric operators with SP perform better, while in the latter case, GQP with shared operators enhanced by SP give the best results.

Published in:
Proceedings of the 39th International Conference on Very Large Data Bases
Presented at:
39th International Conference on Very Large Data Bases

 Record created 2013-05-01, last modified 2019-08-12

Correction of legend of Figure 6c:
Download fulltextPDF
Publisher's version:
Download fulltextPDF
Rate this document:

Rate this document:
(Not yet reviewed)