Dynamics of capillary self-alignment for mesoscopic foil devices

We report experimental evidence for three sequential, distinct dynamic regimes in the capillary self-alignment of centimeter-sized foil dies released at large uniaxial offsets from equilibrium. We show that the initial transient wetting regime, along with inertia and wetting properties of the dies, significantly affect the alignment dynamics including the subsequent constant acceleration and damped oscillatory regimes. An analytical force model is proposed that accounts for die wetting and matches quasi-static numerical simulations. Discrepancies with experimental data point to the need for a comprehensive dynamical model to capture the full system dynamics.


Published in:
Applied Physics Letters, 102, 144101
Year:
2013
Publisher:
Melville, American Institute of Physics
ISSN:
0003-6951
Keywords:
Laboratories:




 Record created 2013-04-09, last modified 2018-03-17

Publisher's version:
Download fulltextPDF
Supplementary Information:
Download fulltextPDF
External links:
Download fulltextURL
Download fulltextn/a
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)