Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Discrete vs continuum level simulation of radiative transfer in semitransparent two-phase media
 
research article

Discrete vs continuum level simulation of radiative transfer in semitransparent two-phase media

Petrasch, J.
•
Haussener, S.  
•
Lipiński, W.
2011
Journal of Quantitative Spectroscopy and Radiative Transfer

The mathematical formulation of the continuum approach to radiative transfer modeling in two-phase semi-transparent media is numerically validated by comparing radiative fluxes computed by (i) direct, discrete-scale and (ii) continuum-scale approaches. The analysis is based on geometrical optics. The discrete-scale approach uses the Monte Carlo ray-tracing applied directly to real 3D geometry measured by computed tomography. The continuum-scale approach is based on a set of continuum-scale radiative transfer equations and associated radiative properties, and employs the Monte Carlo ray-tracing for computations of radiative fluxes and for computations of the radiative properties. The model two-phase media are reticulate porous ceramics and a particle packed bed, each composed of semitransparent solid and fluid phases. The results obtained by the two approaches are in good agreement within the limits of statistical uncertainty. The continuum-scale approach leads to a reduction in computational time by approximately one order of magnitude, and is therefore suited to treat radiative transfer problems in two-phase media in a wide range of engineering applications.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JQSRT_DiscretevsContinuum.pdf

Access type

openaccess

Size

534.37 KB

Format

Adobe PDF

Checksum (MD5)

fe77d78dedbb4d9561d49a1da1037912

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés