Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. OFDM Channel Estimation Based on Impulse Response Decimation: Analysis and Novel Algorithms
 
research article

OFDM Channel Estimation Based on Impulse Response Decimation: Analysis and Novel Algorithms

Rosati, Stefano  
•
Corazza, Giovanni E.
•
Vanelli-Coralli, Alessandro
2012
Ieee Transactions On Communications

In this paper, OFDM data-aided channel estimation based on the decimation of the Channel Impulse Response (CIR) through the selection of the Most Significant Samples (MSS) is addressed. Our aim is to approach the Minimum Mean Square Error (MMSE) channel estimation performance, while avoiding the need for a-priori knowledge of channel statistics (KCS). The optimal set of samples is defined in the instantaneous and average senses. We derive lower bounds on the estimation mean-square error (MSE) performance for any MSS selection strategy. We show how MSS-based channel estimation can approach these MSE lower bounds. We introduce novel MSS strategies oriented towards instantaneous decimation (Instantaneous Energy Selection - IES), and windowed decimation (Average Energy Selection - AES). We also consider decimation via Threshold Crossing Selection (TCS), which we characterize analytically, to derive the optimum threshold in the minimum MSE sense. We also propose a sub-optimal method for threshold setting that does not require KCS. Finally, we provide numerical results in terms of both MSE estimation performance and Bit Error Rate (BER) of a coded OFDM system using the proposed channel estimators, to show that they indeed approach MMSE performance.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Journal-TOC-Rosati-2013.pdf

Access type

openaccess

Size

332.71 KB

Format

Adobe PDF

Checksum (MD5)

2111481e100223bfb6d64d73affd319f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés