Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dispersion operators and resistant second-order functional data analysis
 
research article

Dispersion operators and resistant second-order functional data analysis

Kraus, David  
•
Panaretos, Victor M.  
2012
Biometrika

Inferences related to the second-order properties of functional data, as expressed by covariance structure, can become unreliable when the data are non-Gaussian or contain unusual observations. In the functional setting, it is often difficult to identify atypical observations, as their distinguishing characteristics can be manifold but subtle. In this paper, we introduce the notion of a dispersion operator, investigate its use in probing the second-order structure of functional data, and develop a test for comparing the second-order characteristics of two functional samples that is resistant to atypical observations and departures from normality. The proposed test is a regularized M-test based on a spectrally truncated version of the Hilbert-Schmidt norm of a score operator defined via the dispersion operator. We derive the asymptotic distribution of the test statistic, investigate the behaviour of the test in a simulation study and illustrate the method on a structural biology dataset.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Biometrika-2012-Kraus-biomet_ass037.pdf

Access type

restricted

Size

347.57 KB

Format

Adobe PDF

Checksum (MD5)

264ab2e00c198cdc77ee5f19918a0cd1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés