Ultrasensitive photodetectors based on monolayer MoS2

Two-dimensional materials are an emerging class of new materials with a wide range of electrical properties and potential practical applications. Although graphene(1) is the most well-studied two-dimensional material, single layers of other materials, such as insulating BN (ref. 2) and semiconducting MoS2 (refs 3,4) or WSe2 (refs 5,6), are gaining increasing attention as promising gate insulators and channel materials for field-effect transistors. Because monolayer MoS2 is a direct-bandgap semiconductor(7,8) due to quantum-mechanical confinement(7,9,10), it could be suitable for applications in optoelectronic devices where the direct bandgap would allow a high absorption coefficient and efficient electron-hole pair generation under photo-excitation. Here, we demonstrate ultrasensitive monolayer MoS2 phototransistors with improved device mobility and ON current. Our devices show a maximum external photoresponsivity of 880 AW(-1) at a wavelength of 561 nm and a photoresponse in the 400-680 nm range. With recent developments in large-scale production techniques such as liquid-scale exfoliation(11-13) and chemical vapour deposition-like growth(14,15), MoS2 shows important potential for applications in MoS2-based integrated optoelectronic circuits, light sensing, biomedical imaging, video recording and spectroscopy.

Published in:
Nature Nanotechnology, 8, 7, 497-501
London, Nature Publishing Group

 Record created 2013-02-19, last modified 2018-03-18

Publisher's version:
Download fulltextPDF
Supplementary information:
Download fulltextPDF
Rate this document:

Rate this document:
(Not yet reviewed)