Journal article

An in situ diffraction study of domain wall motion contributions to the frequency dispersion of the piezoelectric coefficient in lead zirconate titanate

The contribution of non-180 degrees domain wall displacement to the frequency dependence of the longitudinal piezoelectric coefficient has been determined experimentally in lead zirconate titanate using time-resolved, in situ neutron diffraction. Under subcoercive electric fields of low frequencies, approximately 3% to 4% of the volume fraction of non-180 degrees domains parallel to the field experienced polarization reorientation. This subtle non-180 degrees domain wall motion directly contributes to 64% to 75% of the magnitude of the piezoelectric coefficient. Moreover, part of the 33 pm/V decrease in piezoelectric coefficient across 2 orders of magnitude in frequency is quantitatively attributed to non-180 degrees domain wall motion effects. (C) 2013 American Institute of Physics. []

Related material