Single-cell RT-PCR, a technique to decipher the electrical, anatomical, and genetic determinants of neuronal diversity

The patch-clamp technique has allowed detailed studies on the electrical properties of neurons. Dye loading through patch pipettes has allowed characterizing the morphological properties of the neurons. In addition, the patch-clamp technique also allows harvesting mRNA from single cells to study gene expression at the single-cell level (known as single-cell reverse transcription-polymerase chain reaction [RT-PCR] [1-3]). The combination of these three approaches allows determination of the Gene expression, Electrophysiology and Morphology (GEM) profile of neurons (gene expression, electrophysiology, and morphology) using a single patch pipette and patch-clamp recording. This combination provides a powerful technique to study and correlate the neuron's gene expression with its phenotype (electrical behavior and morphology) ( 4 - 7 ). The harvesting and amplification of single-cell mRNA for gene expression studies is a challenging task, especially for researchers with sparse or no training in molecular biology (see Notes 1 and 2). Here, we describe in detail the GEM profiling approach with special attention to the gene expression profiling.


Published in:
Methods in molecular biology (Clifton, N.J.), 403, 123-39
Year:
2007
ISSN:
1064-3745
Keywords:
Other identifiers:
Laboratories:




 Record created 2013-01-28, last modified 2018-09-13


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)