Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Optimal Perimeter Control for Two Urban Regions With Macroscopic Fundamental Diagrams: A Model Predictive Approach
 
research article

Optimal Perimeter Control for Two Urban Regions With Macroscopic Fundamental Diagrams: A Model Predictive Approach

Geroliminis, Nikolaos  
•
Haddad, Jack  
•
Ramezani Ghalenoei, Mohsen  
2013
IEEE Transactions on Intelligent Transportation Systems

Recent analysis of empirical data from cities showed that a macroscopic fundamental diagram (MFD) of urban traffic provides for homogenous network regions a unimodal low-scatter relationship between network vehicle density and network space-mean flow. In this paper, the optimal perimeter control for two-region urban cities is formulated with the use of MFDs. The controllers operate on the border between the two regions and manipulate the percentages of flows that transfer between the two regions such that the number of trips that reach their destinations is maximized. The optimal perimeter control problem is solved by model predictive control, where the prediction model and the plant (reality) are formulated by MFDs. Examples are presented for different levels of congestion in the regions of the city and the robustness of the controller is tested for different sizes of error in the MFDs and different levels of noise in the traffic demand. Moreover, two methods for smoothing the control sequences are presented. Comparison results show that the performances of the model predictive control are significantly better than a "greedy" feedback control. The results in this paper can be extended to develop efficient hierarchical control strategies for heterogeneously congested cities.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

NG_JH_MR_2012.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

2.02 MB

Format

Adobe PDF

Checksum (MD5)

16ff5b60517f5a2dc278cffaa4dec9b5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés