Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction
 
research article

Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction

Fierz, Beat  
•
Chatterjee, Champak
•
McGinty, Robert K.
Show more
2011
Nature chemical biology

Regulation of chromatin structure involves histone posttranslational modifications that can modulate intrinsic properties of the chromatin fiber to change the chromatin state. We used chemically defined nucleosome arrays to demonstrate that H2B ubiquitylation (uH2B), a modification associated with transcription, interferes with chromatin compaction and leads to an open and biochemically accessible fiber conformation. Notably, these effects were specific for ubiquitin, as compaction of chromatin modified with a similar ubiquitin-sized protein, Hub1, was only weakly affected. Applying a fluorescence-based method, we found that uH2B acts through a mechanism distinct from H4 tail acetylation, a modification known to disrupt chromatin folding. Finally, incorporation of both uH2B and acetylated H4 resulted in synergistic inhibition of higher-order chromatin structure formation, possibly a result of their distinct modes of action.

  • Details
  • Metrics
Type
research article
DOI
10.1038/nchembio.501
Author(s)
Fierz, Beat  
Chatterjee, Champak
McGinty, Robert K.
Bar-Dagan, Maya
Raleigh, Daniel P.
Muir, Tom W.
Date Issued

2011

Published in
Nature chemical biology
Volume

7

Issue

2

Start page

113

End page

9

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LCBM  
Available on Infoscience
October 15, 2012
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/86100
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés