
Presented at ION GNSS 2012, Session D3, Nashville, TN, USA, September 17-21, 2012.

1

Improving the Performance of the FFT-based

Parallel Code-phase Search Acquisition of GNSS

Signals by Decomposition of the Circular

Correlation

Jérôme Leclère, Cyril Botteron, Pierre-André Farine,

Electronics and Signal Processing Laboratory (ESPLAB),

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

BIOGRAPHIES

Jérôme Leclère received the Master Degree in

Electronics and Signal Processing from the ENSEEIHT,

Toulouse, France, in 2008. He is currently performing his

Ph.D. thesis in the GNSS field at EPFL, focusing his

researches in the acquisition and high sensitivity areas,

with application to hardware receivers, especially using

FPGAs.

Dr. Cyril Botteron leads the GNSS and UWB groups in

the electronics and signal processing laboratory at EPFL.

He received his PhD degree from the University of

Calgary, Canada, in 2003. His current research interests

comprise the development of low power radio frequency

(RF) integrated circuits and advanced signal processing

techniques for ultra-low power communications and

global and local positioning applications.

Prof. Pierre-André Farine is professor in electronics and

signal processing at EPFL, and is head of the electronics

and signal processing laboratory. He received the M.Sc.

and Ph.D. degrees in Microtechnology from the

University of Neuchâtel, Switzerland, in 1978 and 1984,

respectively. He is active in the study and implementation

of low-power solutions for applications covering wireless

telecommunications, ultra-wideband, global navigation

satellite systems, and video and audio processing. He is

the author or coauthor of more than 100 publications in

conference and technical journals and 50 patent families

(more than 270 patents).

ABSTRACT

This paper proposes alternative architectures to perform a

circular correlation using the Fast Fourier Transform

(FFT) by decomposing the initial circular correlation into

several smaller circular correlations. The approach used is

similar to the Fast Finite Impulse Response (FIR)

Algorithms (FFAs). These architectures improve the

performance in terms of reduced processing time or

resource usage, and consequently lower the energy

consumption.

The results can be applied to any system that performs

circular convolution or correlation. In this paper, the

application is the acquisition of Global Navigation

Satellite System (GNSS) signals with the FFT-based

Parallel Code-phase Search (PCS), and more precisely on

the GPS L1 C/A signal, when the target considered is a

Field Programmable Gate Array (FPGA).

In this context, it is for example shown that it is possible

with one of the proposed architectures to reduce the logic

usage by 11 %, the memory usage by 41 %, and the

Digital Signal Processing (DSP) block usage by 32 %,

while keeping the same processing time. With another

architecture, it is shown that the processing time can be

halved by increasing the logic usage by only 35 %, while

reducing the memory usage and keeping the same DSP

usage.

Note that the proposed approach is not based on an

approximation of the traditional method, but a modified

implementation providing the same result. Thus, there is

no loss of sensitivity.

1. INTRODUCTION

The acquisition of GNSS signals consists mainly in three

steps : 1) multiplication of the input signal with a local

carrier replica to remove the offset in frequency due to the

Doppler effect, 2) multiplication with a local pseudo-

random noise (PRN) code replica; 3) Integration. The

process has to be repeated for different carrier frequencies

and code phases of the replicas until they are both aligned

with the received ones. This is thus a two-dimension

search (for each satellite). Together, the last two steps are

equivalent to a circular correlation (due to the code

repetition). As a consequence, the FFT can be used to

compute it. This enables getting the correlation result for

all the code-phases simultaneously. This is known as

Parallel Code-phase Search acquisition.

However, the processing time can still be relatively long,

because of : 1) the different carrier frequencies to test; 2)

the results over dozens or hundreds of code periods that

are usually accumulated to increase the sensitivity; 3) the

process has to be repeated for several satellites (up to a

few dozens, if there is no a priori information and several

constellations are considered). Therefore, finding new

methods to perform the search faster is still topical.

Within this context, we use an approach that consists in

decomposing the initial circular correlation into several

Presented at ION GNSS 2012, Session D3, Nashville, TN, USA, September 17-21, 2012.

2

smaller circular correlations. This approach is similar to

the FFAs, and the idea to combine it with the FFT to

perform convolution was briefly described in [1], but the

algorithms proposed were not optimal and no deep study

was undertaken.

Therefore, in this paper we propose and study several

architectures using different numbers of FFTs that lead to

different performance results. Among them, one

architecture enables reducing the resources while keeping

the same processing time, whereas others enable reducing

the processing time, at the expense of an increase in

resources.

The rest of the paper is organized as follows : In Section

2, a fast review of the acquisition of GNSS signals is

given. Section 3 shows how the FFT can be used to

compute a circular correlation. Section 4 shows how the

processing time can be reduced by duplicating elements.

Section 5 presents the FFA principle and provides

different architectures to reduce the processing time or the

resource usage. Section 6 discusses briefly the impact on

the energy consumption. In Section 7, an application

example is discussed, providing details about the FPGAs

and models used for the FFT and other functions. Results

are first obtained using the models presented, and then

checked with a real implementation of two architectures.

Section 8 summarizes some important results and

concludes on the impact of the proposed architectures.

2. ACQUISITION OF GNSS SIGNALS

Signals transmitted by GNSS satellites are a combination

of a carrier, one or several PRN codes specific to each

satellite, and a navigation data message [2]. When

reaching the GNSS receiver, the frequency of the carrier

(and of the PRN code) is different for each satellite

because of the Doppler effect, and the phase of the code is

unknown since the distance from the satellites is unknown

assuming no a priori synchronization.

After down-conversion and digitization, the GNSS

receiver performs an acquisition, which consists in

multiplying the signal s[n] by a carrier replica of the same

frequency; then multiplying by a code replica of the same

phase (and same frequency), c[n-τ], where τ is a delay;

and then integrating the result over time to raise the signal

out of the noise [3]. The last two steps are equivalent to a

circular correlation (due to the code repetition).

The corresponding schematic is shown in Fig. 1, where it

can be noted that the process repeats for different phases

of the code (τ belongs to T) and different carrier

frequencies called bins (f belong to F). Τ and F depend on

the context, such as the PRN code length, the signal

modulation, the carrier frequency, the integration time or

a priori information. For example, considering the GPS

L1 C/A signal which PRN code is 1023-chip long

(corresponding to 1 ms) and the frequency range of about

± 5 kHz (for a static user, and not including the offset of

the receiver oscillator [4]), the code-phase step will be

typically ½ chip resulting in 2046 code bins; and the

frequency step will be typically 500 Hz for a coherent

integration time of 1 ms leading to 21 frequency bins [4].

The search can be parallelized in the frequency space by

looking at several or all the frequency bins using an FFT :

this is called Parallel Frequency Search [5][6]. The search

can also be parallelized in the code space, by using the

FFT to get the correlation result for all the code bins

simultaneously : this is the Parallel Code-phase Search

(PCS) [7]. A description of these methods and their

implementation on FPGAs can be found in [8]. In the

following, we concentrate on the PCS, which is described

in the next section.

s[n]

e
j2πfn c[n-τ]

∑
rf,τ[n]

repeat for τ ∈ Τ

repeat for f ∈ F

correlation

Fig. 1 : Principle of the acquisition of GNSS signals

3. CIRCULAR CORRELATION USING FFT

The circular correlation between two finite-length

sequences x[n] and h[n] (corresponding to the input signal

and code replica in our case, respectively), is defined by

Eq. (1), where N is the number of samples in one period

of the PRN code and
*
 denotes the conjugate.

1

*

0

[] [] [() mod]
N

k

y n h k x k n N




  (1)

In z domain formulation, the correlation becomes a

product of two polynomials [9].

* *

() () (1 /) mod (1)
N

Y z X z H z z


  (2)

The Discrete Fourier Transform (DFT) of y[n] can be

obtained by evaluating Y(z) in z = e
j2πk/N

, and we obtain

      *
DFT [] DFT [] DFT []y n x n h n (3)

Using the FFT algorithm to implement the DFT [10], the

circular correlation can thus be obtained using the Inverse

FFT (IFFT), as shown by Eq. (4).

    *
[] IFFT FFT [] FFT []y n x n h n    (4)

In the GNSS context, the code replica is real (for

quadrature signals such as L5 and E5, the codes of pilot

and data channels can be generated as complex or

separately as real as well). Using this property and the

fact that the conjugate of the FFT of a sequence is equal

to the IFFT of the conjugate of the same sequence [11],

Eq. (4) can be simplified to Eq. (5).

     [] IFFT FFT [] IFFT []y n x n h n (5)

The circular correlation can thus be performed using one

N-point FFT, and two N-point IFFTs, as shown in Fig. 2.

For the following, the architectures will be denoted as

P−T−N−M, where P corresponds to ratio between the

processing time of the traditional architecture provided in

this section and the processing time of the architectures

(neglecting the latency); T to the number of FFTs and

IFFTs used; N to the transform length of the FFTs; and M

Presented at ION GNSS 2012, Session D3, Nashville, TN, USA, September 17-21, 2012.

3

to the number of complex multipliers used. The

traditional architecture can thus be denoted as 1−3−N−1.

A simplified timing diagram is shown in Fig. 3, where the

different code periods are represented by different colors.

Considering that an FFT has a latency of N + L cycles, L

being an intrinsic latency linked to the FFT

implementation, the K
th

 correlation result is thus available

after KN + 2N + 2L cycles.

x[n]

h[n]

y[n]

H*[k]

X[k] Y[k]
FFT

IFFT

IFFT

N

N N
Fig. 2 : Circular correlation using FFT

(architecture 1−3−N−1)

h[n]

H*[k]

X[k]

Y[k]

y[n]

h h h

Y Y Y

y y y

N

H* H* H*

X X X

x[n] x x x

h

x

H*

Y

X

y

LL
Fig. 3 : Timing diagram of the traditional architecture

(1−3−N−1)

4. REDUCTION OF THE PROCESSING TIME BY

DUPLICATION

4.1 Initial Approach

One of the solutions to reduce the processing time is to

duplicate the architecture, as shown in Fig. 4, where the

top branch can process the even periods of the code, and

the bottom one the odd periods.

In this case the processing time is halved (considering an

even number of correlation result), since the K
th

correlation result is available after / 2 2 2K N N L   

cycles (see timing diagram in Fig. 5), but the resources

are doubled. In fact, the resources are slightly more than

doubled due to the extra adder and the modified

generation of the code replica. Indeed, this architecture

requires the generation of two consecutive periods of the

replica simultaneously (see Appendix A for more details

on code replica generation).

xA[n]

hA[n]

yA[n]

xB[n]

hB[n]

yB[n]

FFT

IFFT

IFFT

FFT

IFFT

IFFT

y[n]

N

N

N

N

N

N

HA
*[k]

XA[k]

HB
*[k]

XB[k]

YA[k]

YB[k]

Fig. 4 : Duplication of the traditional architecture

(architecture 2−6−N−2)

hA[n]

hB[n]

h h

hh

h

HA
[k] H

HB
[k] H

XA[k] X

XB[k] X

H*

H*

X

X

h

H*

H*

X

X

YA[k] Y

YB[k] Y

Y

YY

Y

yA[n] y

yB[n] y

y

yy

y

y[n] y + y y + y y + y

N

xA[n]

xB[n]

x x

xx

x

x

L L
Fig. 5 : Timing diagram when the traditional

architecture is duplicated (architecture 2−6−N−2)

4.2 Use of the real property of the PRN code replica

h[n]

It is known that the FFTs of two real sequences can be

performed using only one FFT at the expense of a

recombination afterwards [12] (details on implementation

are given in Appendix B). Using this principle, we can

thus use one FFT for hA[n] and hB[n], and obtain the

architecture shown in Fig. 6. However, this trick increases

the global latency by N cycles, and the K
th

 correlation

result is now available after / 2 3 2K N N L    cycles

(see timing diagram in Fig. 7).

h[n] =

hA[n] + j hB[n]

xA[n] yA[n]

xB[n] yB[n]

y[n]
H’[k]

H’[N-k]

FFT

FFT IFFT

FFT IFFT

N

N

N

Memory
2N

Combination

N

N

XA[k]

XB[k]

XA[k]

XB[k]

H[k]
HA

*[k]

HB
*[k]

Fig. 6 : Modification of the architecture 2−6−N−2 into

an architecture 2−5−N−2

xA[n]

xB[n]

x x

xx

x

h[n] h + j h h + j h

H[k] H + j H

HA
[k] H

HB
[k] H

XA[k] X

XB[k] X

H*

H*

X

X

x

H + j H

h + j h

H + j H

H*

H*

X

X

YA[k] Y

YB[k] Y

Y

YY

Y

yA[n] y

yB[n] y

y

yy

y

y[n] y + y y + y y + y

N

LL

Fig. 7 : Timing diagram of the architecture 2−5−N−2

Presented at ION GNSS 2012, Session D3, Nashville, TN, USA, September 17-21, 2012.

4

5. FAST FIR ALGORITHMS

5.1 Introduction to FFAs

Using the polyphase decomposition of filters [13], it is

possible to obtain more efficient structures for FIR filters

by parallelizing the processing and removing redundant

computations [14][15]. A FIR filter performs a

convolution, which is related to correlation; consequently

we can apply the concept to the PCS.

5.2 Separation in two

5.2.1 Initial Approach

We start by using the following polyphase representation

(which corresponds to a separation of the signals into

even and odd samples) :

2 1 2

0 1

2 1 2

0 1

1 2 2

0 1

() () ()

() () ()

() () () ,

Y z Y z z Y z

X z X z z X z

H z H z z H z





  

 

 

 

 (6)

where

0

0

1

0

() [2]

() [2]

() [2] ,

n

i

n

n

i

n

n

i

n

Y z y n i z

X z x n i z

H z h n i z



















 

 

 







 (7)

and i ∈ {0, 1}. Using Eq. (6), we can thus reformulate Eq.

(2) as (the modulo operation is not shown) :

2 2 2 2 2

0 0 0 1 1

2 2 2 2 2 2

1 1 0 0 1

() () () () ()

() () () () ()

Y z H z X z H z X z

Y z z H z X z H z X z

 

 

 

 
 (8)

Evaluating these relations in z = e
j2πk/N

, we obtain

* *

0 0 0 1 1

2 / (/ 2) * *

1 1 0 0 1

[] [] [] [] []

[] [] [] [] [] ,
j k N

Y k H k X k H k X k

Y k e H k X k H k X k


 

 
 (9)

where

 

 

 *

[] FFT [2]

[] FFT [2]

[] IFFT [2] .

i

i

i

Y k y n i

X k x n i

H k h n i

 

 

 

 (10)

and i ∈ {0, 1}. The corresponding architecture is shown in

Fig. 8. The number of FFTs is doubled compared to the

traditional architecture, however the transform length is

halved, and there are now 5 multipliers and 2 adders.

A simplified timing diagram of this architecture is shown

in Fig. 9. The K
th

 correlation result is available after KN/2

+ N + 2L cycles.

Similarly as for the architectures using duplication, this

architecture requires a modified generation of the code

replica, since two consecutive samples of the replica must

be generated simultaneously (see Appendix A).

x0[n]

x1[n]

h0[n]

h1[n]

y0[n]

y1[n]

X0[k]

X1[k]

H0
*[k]

H1
*[k]

FFT

FFT

IFFT

IFFT

IFFT

e
j2πk/(N/2)

IFFT

N/2

N/2

N/2

N/2

N/2

N/2

Fig. 8 : FFA-based circular correlation

(architecture 2−6−N/2−5)

xi[n]

hi[n]

Xi[k]

Hi[k]

hi

Xi

Hi

xi

hi

xi

hi

xi

hi

Xi

Hi

Xi

Hi

Xi

Hi

Xi

Hi

N/2

yi[n] yi yi yi yiyi

xi xi

hi

Yi[k] Yi Yi Yi YiYi

xi

hi

Xi

Hi

yi

Yi

i ∈{0;1}

LL
Fig. 9 : Timing diagram of the FFA-based architecture

2−6−N/2−5

5.2.2 Reduction of multipliers

It is possible to reduce the number of multipliers at the

expense of extra adders, as detailed in [14] and [15]. This

is interesting because multipliers cost more than adders in

terms of hardware. A possible solution is given in Eq.

(11).

 

 

 

 

* *

0 1 0 1

*

0 0 1

2 / (/ 2) * *

1 1 0 0

*

0 0 1

[] [] [] []

[] [] []

[] [] [] []

[] [] []

j k N

Y k H k H k X k

H k X k X k

Y k e H k H k X k

H k X k X k



 

 

 

 

 (11)

The corresponding architecture is shown in Fig. 10.

x0[n]

x1[n]

h0[n]

h1[n]

y0[n]

y1[n]
FFT

FFT

IFFT

IFFT

IFFT

IFFT

X1[k]

X0[k]

H0
*[k]

H1
*[k]

N/2

N/2

N/2

N/2

N/2

N/2

e
j2πk/(N/2)

–

–

Y0[k]

Y1[k]

Fig. 10

1
 : FFA-based circular correlation with reduced

number of multipliers (architecture 2−6−N/2−4)

1
 This figure contains two typo errors : Y0[k] and Y1[k] are

inverted, as well as y0[n] and y1[n].

Presented at ION GNSS 2012, Session D3, Nashville, TN, USA, September 17-21, 2012.

5

There are now 4 multipliers, 5 adders and the generation

of an exponential is required (typically using a

Numerically Controlled Oscillator, or NCO). The timing

diagram is not affected as compared to the architecture

2−6−N/2−5.

5.2.3 Use of the real property of the PRN code replica

h[n]

As described in Section 4.2, we can use only one FFT for

h0[n] and h1[n], and obtain the architecture shown in Fig.

11 with the corresponding timing diagram in Fig. 12. The

K
th

 correlation result is now available after KN/2 + 3N/2

+ 2L cycles.

Compared to the architecture 2−5−N−2, there are as many

FFTs but the transform length is halved. We can thus

expect that this architecture is more efficient, even if it

has 2 extra multipliers and 4 extra adders.

x0[n]

x1[n]

y0[n]

y1[n]
FFT

FFT

IFFT

IFFT

X1[k]

X0[k]

N/2

N/2

N/2

N/2

e
j2πk/(N/2)

–

–

Y0[k]

Y1[k]

h[n] =

h0[n] + j h1[n]

H’[k]

H’[N-k]

FFT
N/2

Memory
N

Combination
H[k]

H0
*[k]

H1
*[k]

Fig. 11

1
 : Modification of the architecture 2−6−N/2−4

into an architecture 2−5−N/2−4

xi[n]

h[n]

Hi
*[k]

h0 + j h1

Hi
*

xi

h0 + j h1

xi

h0 + j h1

xi

h0 + j h1

Hi
* Hi

* Hi
*Hi

*

N/2

yi[n] yi yi yi yiyi

xi xi

h0 + j h1

Yi[k] Yi Yi Yi YiYi

xi

h0 + j h1

Hi
*

yi

Yi

H[k] H0 + j H1 H0 + j H1 H0 + j H1 H0 + j H1H0 + j H1 H0 + j H1

Xi[k] Xi Xi Xi XiXi Xi

i ∈{0;1}

LL
Fig. 12 : Timing diagram of the FFA-based

architecture 2−5−N/2−4

5.3 Separation in P

The same principle can be applied to split the signals in 3,

4, or any value. For a splitting in P (which means a

reduction of the processing time by P), when the number

of multipliers and FFTs is not reduced (as architecture

2−6−N/2−5), the resulting architecture is composed of

- 3P (I)FFTs of N/P points

- P
2

+ P – 1 multipliers (P² for the products

between the Hi and Xj, and P – 1 for the products

with the exponential)

- P (P – 1) adders

- 1 NCO

As shown in Section 5.2.2, the number of multipliers can

be reduced. The optimal reduction provides the minimum

number of multipliers, which is 3P – 2 (2P – 1 for the

products between the Hi and Xj [16][17], and P – 1 for the

products with the exponential). However, for large P, the

number of extra adders becomes excessive.

It is then possible to use sub-optimal algorithms that still

reduce the number of multipliers while keeping the

increase of extra adders moderate [14][15]. Table 1 gives

the complexity for the first values of P. It can be seen that

for P = 2, the sub-optimal reduction gives the same result

as the optimal reduction.

Table 1 : Complexity of different FFAs

 P

Number of

complex

multipliers

Number of

complex adders

No

reduction of

multipliers

2 5 2

3 11 6

4 19 12

Sub-optimal

reduction of

multipliers

2 4 5

3 8 13

4 13 25

Optimal

reduction of

multipliers

2 4 5

3 7 25

4 10 78

5.4 Application to reduce resources

The FFA algorithm can also be used to reduce the

resources when time multiplexing is applied. An example

is shown in Fig. 13, with the corresponding timing

diagram in Fig. 14. The combination algorithm to obtain

Y0[k] and Y1[k] can be one of the previously presented

(Eq. (9) or (11)) or an equivalent one, this is why the

value of M is not specified in the caption of Fig. 13.

First the inputs s0[n] and s1[n] take the value of the code

replica, h0[n] and h1[n], their FFT is computed and stored

in memory. During the storage, the inputs take the value

of the input signal, x0[n] and x1[n]. When their FFTs are

available, the memories are read, the products and

combination between the Hi[k] and the Xi[k] are

performed to obtain Y0[k] and Y1[k]. The IFFT of Y0[k] is

computed while Y1[k] is stored in memory. Then the

memory is read and the IFFT of Y1[k] is computed.

This architecture requires only 3 N/2-point FFTs and two

memories (Y1[k] can be stored in one of the memories

used for H0
*
[k] and H1

*
[k] because the writing/reading

accesses do not overlap). The throughput of this

architecture is identical to the one of the traditional

architecture, and the latency is slightly reduced, since the

K
th

 correlation result is available after KN+3N/2+2L.

s1[n]

s0[n]

y[n]
X0[k]

X1[k]

Y1[k]

Y0[k]

(I)FFT

(I)FFT

N/2

N/2

S0[k]

S1[k]

H0
*[k]

H1
*[k]

Y[k]

M0[k]

M1[k]

IFFT
N/2

Combination

algorithm

Memory
N/2

Memory
N/2

Memory
N/2

Fig. 13 : FFA-based architecture to reduce resources

(architecture 1−3−N/2−M)

1
 This figure contains two typo errors : Y0[k] and Y1[k] are

inverted, as well as y0[n] and y1[n].

Presented at ION GNSS 2012, Session D3, Nashville, TN, USA, September 17-21, 2012.

6

si[n]

Si[k]

Yi[k]

hi

XiHi

xihi xihi

XiHi XiHi XiHi

Yi Yi Yi Yi

Y[k] Y0 Y1 Y0 Y1 Y0 Y1 Y0 Y1

N/2

y[n] y0 y1 y0 y1 y0 y1 y0 y1

Mi[k]

xi

Hi
* Hi

* Hi
* Hi

*

xihi

i ∈{0;1}

LL
Fig. 14 : Timing diagram of the FFA-based

architecture to reduce resources

(architecture 1−3−N/2−M)

6. REDUCTION OF THE ENERGY

CONSUMPTION

The proposed architectures also have a positive impact on

the energy consumption compared to the traditional

architecture. The energy consumption is the product of

the processing time with the power consumption. The

latter is proportional to the resources with a 1 to 1 ratio.

Consequently, the reduction of the power consumption is

obtained naturally for the architectures that have reduced

resources. Since the processing time is unchanged, the

energy consumption is also reduced.

For the architectures that reduce the processing time, if

the increase of resources is lower than the decrease of the

processing time, the energy consumption will also be

reduced. For example, if we consider an architecture that

halves the processing time while the resources are

increased by 50 %, its energy consumption will be 75 %

of that of the initial architecture.

7. APPLICATION EXAMPLE

This section presents a comparison of the different

architectures when implemented on FPGAs. A low-cost

FPGA family (Altera Cyclone III EP3C120) and a high-

end FPGA family (Altera Stratix III EP3SE260) are

investigated. The GPS L1 C/A signal is considered. The

main lobe of this signal is within 2.046 MHz, we consider

thus a sampling frequency of 2.048 MHz, i.e. N = 2048.

We first use models to determine the resource usage of

the different functions in the architectures (FFT,

multiplier, adder, memory). Except for the FFT, whose

model is based on estimates from Altera, the models are

quite straightforward and have been checked empirically.

Then, a real implementation of two architectures is done

to verify the accuracy of the models.

7.1 FPGA Resources

An FPGA is a programmable device containing three

main types of elements :

- Logic block : This is a small block containing a

Look-Up Table (LUT) enabling the creation of logic

functions, a full adder, and one or several registers.

This basis block is different for each manufacturer

and even between some FPGA families

- Memory block : This is a small size memory

(typically between 0.5 and 128 Kibit), having

multiple ports.

- Digital Signal Processing (DSP) block : This is a

block containing several hardware multipliers

(typically 18 × 18 bits).

To compare the different architectures, we will thus

consider the three above elements.

In addition to the resource usage of the architectures, we

also consider the product resource-processing time, which

corresponds to the energy consumption. Thus, to compare

fairly the architectures, we define the energy efficiency as

the ratio of the energy consumption of the traditional

architecture over the energy consumption of the

considered architecture :

 ,
ref ref ref

E R T
e

E RT
  (12)

where Eref, Rref, Tref, E, R, and T are the energy

consumption, the resource and the processing time of the

traditional architecture and of the considered architecture,

respectively. The traditional architecture has thus an

energy efficiency of 1. For the other architectures, the

greater is the value, the more efficient is the architecture.

7.2 Model for FFT

Altera proposes several ways to implement an FFT [18].

Considering only the streaming implementation and not

the buffered ones (because the computation speed is the

core of the study), there are two options, fixed streaming,

and variable streaming.

Fixed streaming uses the block-floating point arithmetic,

receives and outputs the data in natural order only, and

can implement a complex multiplication using 4 real

multipliers and 2 real adders (conventional

representation), or using 3 real multipliers and 5 real

adders (canonical representation).

Variable streaming uses a fixed point arithmetic, and has

the possibility to receive or output data in bit-reversed

order [8][12]. This is a great advantage since it

economizes memory resources and reduces the latency.

However, variable streaming does not offer the choice of

the implementation of complex multiplications.

In Appendix C, we provide a table that summarizes the

logic, memory and DSP resources consumption for Stratix

III FPGAs for different transform lengths and resolutions.

This is an estimation obtained from the Altera Wizard.

The real resource consumption will depend on the FPGA

chosen, the system implemented and the optimizations

selected. However, some observations can be made.

- Doubling the transform length roughly doubles the

memory resources, except for some cases where the

increase is lower.

- For fixed streaming, doubling the transform length

does not change the number of DSP elements,

except between 1024 and 2048 points where the

number is doubled.

- For the variable streaming, in half of the cases

doubling the transform length does not change the

number of DSP elements, for the other half there is

an increase between 16 % and 50 %.

- Regarding the logic elements, doubling the

transform length increase the resources by 11 % on

average.

Presented at ION GNSS 2012, Session D3, Nashville, TN, USA, September 17-21, 2012.

7

From these observations, it can be inferred that the

performance of the different architectures will vary

according to the initial transform length and the resolution

used.

To be more precise in our estimates, we have measured

the resource consumption of the FFT after compilation for

the cases we considered, namely 512, 1024 and 2048

points, with a resolution of 18 bits. The table is provided

in Appendix C.

7.3 Model for other functions

For the complex multiplications, two models are used. For

Stratix III FPGAs, only the conventional representation is

possible [19], a complex multiplication requires thus four

real multipliers and no extra logic (the two real adders are

already included in the DSP blocks). For Cyclone III

FPGA, the canonical representation can be used; a

complex multiplication requires thus three real multipliers

and the equivalent of 8 real adders of R bits, where R is

the resolution of the signals used for the complex

multiplication.

Regarding the complex addition, it corresponds to two

real additions. And a real addition requires R logic

elements (LEs, basis block of Cyclone III FPGA), or R/2

adaptive logic module (ALMs, basis block of Stratix III

FPGA), where R is the resolution of the signals used for

the addition.

Regarding the memory, it is easy to estimate the

requirements knowing the number of samples to store and

their resolution.

7.4 Results from FPGA models

Based on the previously described models, we have

computed the estimated resource usage for different

architectures (enumerated in Table 2 to Table 5). For each

architecture, we have considered the different possible

implementations for the FFT :

- Fixed streaming, and a complex multiplier using

4 real multipliers, denoted as F4.

- Fixed streaming, and a complex multiplier using

3 real multipliers, denoted as F3.

- Variable streaming, and using of natural and bit-

reversed order, denoted V.

The F3 case is considered only for Cyclone III FPGAs,

since the canonical representation is not available on

Stratix III. The case of variable streaming with natural

order for the input and the output is not shown because

the logic and memory usage is always higher than for the

case of variable streaming with natural and bit-reversed

order.

The summary of the resource usage and energy efficiency

of the architectures is provided for Stratix III FPGAs in

Table 2 and Table 3, respectively, and for Cyclone

FPGAs in Table 4 and Table 5, respectively. The ALM

and LE columns represents the logic resources usage, the

M9K column the number of 9216-bit memories used, and

the last column the number of DSP 18-bit elements used

(1 element corresponding to one 18-bit multiplier).

The traditional architecture is the 1−3−2048−1, with an

energy efficiency of 1. From Table 2 and Table 4, it can

be seen that the architecture 1−3−1024−4 uses effectively

less resources than the traditional one, except for the V

implementation of the FFT on Cyclone III FPGAs, which

consumes 3% more of LEs. The most efficient

architecture regarding the logic usage is the

4−10−512−13; the most efficient regarding the memory

usage are the 4−10−512−13 and 4−10−512−10; and the

most efficient regarding the DSP usage is the

2−5−1024−4.

It can be noted that the architecture 2−5−1024 uses less

memory than the traditional architecture for the F4 and F3

implementations of the FFT. For Stratix III FPGAs, the

number of DSP elements is the same, and the logic is

increased by only 40 %. For Cyclone III FPGAs, the

number of DSP elements is lower considering the F4

implementation of the FFT, and equal considering the F3

implementation of the FFT, for an increase of the logic by

47 % and 35 %, respectively.

Table 2 : Resource usage (model-based) of the

architectures for Stratix III FPGA

Architecture

(see §3)

Number of

ALMs

Number of

M9Ks

Number of

DSP 18-bit

elements

P−T−N−M F4 V F4 V F4 V

1−3−1024−4 10305 12042 69 51 52 64

1−3−2048−1 11562 12448 117 59 76 64

2−5−2048−2 19332 20749 213 117 128 108

2−6−1024−4 19100 22574 120 84 88 112

2−5−1024−4 16198 19079 109 79 76 96

4−12−512−13 34562 40542 240 132 196 244

4−12−512−10 35516 41496 240 132 184 232

4−10−512−13 29178 34166 209 119 172 212

4−10−512−10 30132 35120 209 119 160 200

Table 3 : Energy efficiency (model-based) of the

architectures for Stratix III FPGA. The greater is the

better.

Architecture

(see §3)
ALMs M9Ks

DSP 18-bit

elements

P−T−N−M F4 V F4 V F4 V

1−3−1024−4 1.12 1.03 1.70 1.16 1.46 1.00

1−3−2048−1 1 1 1 1 1 1

2−5−2048−2 1.20 1.20 1.10 1.01 1.19 1.19

2−6−1024−4 1.21 1.10 1.95 1.40 1.73 1.14

2−5−1024−4 1.43 1.30 2.15 1.49 2.00 1.33

4−12−512−13 1.34 1.23 1.95 1.79 1.55 1.05

4−12−512−10 1.30 1.20 1.95 1.79 1.65 1.10

4−10−512−13 1.59 1.46 2.24 1.98 1.77 1.21

4−10−512−10 1.53 1.42 2.24 1.98 1.90 1.28

Presented at ION GNSS 2012, Session D3, Nashville, TN, USA, September 17-21, 2012.

8

Table 4 : Resource usage (model-based) of the

architectures for Cyclone III FPGA.

Architecture Number of LEs
Number of

M9Ks

Number of

DSP 18-bit

elements

P−T−N−M F4 F3 V F4 F3 V F4 F3 V

1−3−1024−4 21149 23660 21159 69 69 86 48 39 60

1−3−2048−1 22452 27543 20535 117 117 100 75 57 63

2−5−2048−2 37591 46076 34365 213 213 185 126 96 106

2−6−1024−4 38817 43839 38837 120 120 154 84 66 108

2−5−1024−4 32987 37172 32992 109 109 137 72 57 92

4−12−512−13 72885 82701 70949 240 240 256 183 147 231

4−12−512−10 74361 84177 72425 240 240 256 174 138 222

4−10−512−13 61782 69962 60140 209 209 223 159 129 199

4−10−512−10 63258 71438 61616 209 209 223 150 120 190

Table 5 : Energy efficiency (model-based) of the

architectures for Cyclone III FPGA. The greater is the

better.

Architecture LEs M9Ks
DSP 18-bit

elements

P−T−N−M F4 F3 V F4 F3 V F4 F3 V

1−3−1024−4 1.06 1.16 0.97 1.70 1.70 1.16 1.56 1.46 1.05

1−3−2048−1 1 1 1 1 1 1 1 1 1

2−5−2048−2 1.19 1.20 1.20 1.10 1.10 1.08 1.19 1.19 1.19

2−6−1024−4 1.16 1.26 1.06 1.95 1.95 1.30 1.79 1.73 1.17

2−5−1024−4 1.36 1.48 1.24 2.15 2.15 1.46 2.08 2.00 1.37

4−12−512−13 1.23 1.33 1.16 1.95 1.95 1.56 1.64 1.55 1.09

4−12−512−10 1.21 1.31 1.13 1.95 1.95 1.56 1.72 1.65 1.14

4−10−512−13 1.45 1.57 1.37 2.24 2.24 1.79 1.89 1.77 1.27

4−10−512−10 1.42 1.54 1.33 2.24 2.24 1.79 2.00 1.90 1.33

7.5 Results from real FPGA implementation

To validate our models and conclusion, we have

implemented the architectures 1−3−2048−1 and

2−5−1024−4 on a Stratix III FGPA using the F4

implementation of the FFT. Table 6 and Table 7 provide

in details the resource consumption of both architectures.

The energy efficiency of the architecture 2−5−1024−4 is

1.44 regarding the ALMs, 2.17 regarding the M9K, and

2.00 regarding the DSP elements. As foreseen, this

architecture outperforms the traditional one, and the

implementation results are very close to the estimated

results.

Table 6 : Resource usage of the traditional

architecture implemented on Stratix III FPGA

Function
Number of

ALMs

Number of

M9Ks

Number of

DSP 18-bit

elements

IFFT (h) 3652 39 24

FFT (x) 3596 39 24

Multiplier 0 0 4

IFFT (y) 3648 39 24

Total 10 896 117 76

Table 7 : Resource usage of the architecture

2−5−1024−4 implemented on Stratix III FPGA

Function
Number of

ALMs

Number of

M9Ks

Number of

DSP 18-bit

elements

NCO 1240 0 0

FFT (h) 2748 20 12

Memory 76 8 0

FFT (x0) 2747 20 12

FFT (x1) 2741 20 12

Combination 91 0 16

IFFT (y0) 2779 20 12

IFFT (y1) 2766 20 12

Total 15 188 108 76

8. CONCLUSIONS

In this paper, we have proposed and compared several

alternative architectures to perform the circular

correlation using the FFT. Applying these architectures to

the Parallel Code-phase Search acquisition of the GPS L1

C/A signal with an FPGA implementation, we have

shown that they are more efficient than the traditional

one. More specifically : the proposed architecture

1−3−1024−1 offers the same processing time as the

traditional architecture (even slightly less due to reduced

latency), and reduces at the same time the logic usage by

11 %, the memory by 41 % and the DSP by 32 %,

considering the F4 implementation of the FFT on Stratix

III FPGA; the architecture 2−5−1024−4 halves the

processing time while reducing the memory resources,

keeping the same DSP resources, and increasing the logic

resources by only 35 %, considering the F3

implementation of the FFT on Cyclone III FPGA; and the

architecture 4−10−512−13 divides the processing time by

4 while the memory resources are multiplied by only

1.79, the DSP by 2.26 and the logic by 2.52, considering

the F4 implementation of the FFT on Stratix III FPGAs.

This architecture also provides the best energy efficiency

between the architectures compared, except for the DSP

elements, where it is the 2−5−1024−4 that wins. The

reason is that the 1024-point FFT uses less multipliers

than the 2048-point FFT, whereas the 1024-point FFT and

the 512-point FFT use the same number of multipliers

(see Table 9). This shows the limit of the method, because

for higher decomposition, the efficiency for DSP and

logic block will stop increasing due to additional

multipliers and adders required for the combination.

Note that the proposed methodology can be applied to any

system performing circular correlation.

For future work, we will consider its application to the

other GNSS signals, together with others techniques, such

as the overlap-and-add method if the sampling frequency

does not enable a direct use of a fast algorithm for the

DFT.

ACKNOWLEDGMENTS

The authors would like to thank Pradyumna

Ayyalasomayajula, Patrick Stadelmann and Youssef

Presented at ION GNSS 2012, Session D3, Nashville, TN, USA, September 17-21, 2012.

9

Tawk for their fruitful comments that improved the

quality of this paper.

REFERENCES

[1] M. Teixeira, M. De Jesus, and Y. Rodriguez,

“Parallel FFT and parallel cyclic convolution

algorithms with regular structures and no processor

intercommunication,” High Performance Embedded

Computing 2005, Lincoln Labs, Lexington, MA,

Sept. 2005.

[2] E. Kaplan, C. Hegarty, “Understanding GPS:

principles and applications”, Artech House, 2005.

[3] K. Borre, D. Akos, N. Bertelsen, P. Rinder, S.K.

Jensen, “A software-defined GPS and Galileo

receiver: a single frequency approach”, Birkhäuser

Boston, 2007.

[4] F. van Diggelen, “A-GPS: Assisted GPS, GNSS and

SBAS”, Artech House, 2009.

[5] U. Cheng, W.J. Hurd, J.I. Statman, “Spread-spectrum

code acquisition in the presence of doppler shift and

data modulation”, IEEE Transactions on

Communications, vol. 38, no. 2, pp. 241-250, Feb.

1990.

[6] H. Mathis, P. Flammant, A. Thiel, “An analytic way

to optimize the detector of a post-Correlation FFT

acquisition algorithm”, ION GPS/GNSS 2003,

Portland, Oregon, USA, 9-12 Sept. 2003.

[7] D.J.R. van Nee, A.J.R.M. Coenen, “New Fast GPS

Code-Acquisition Technique using FFT”, Electronics

Letters, vol. 27, no. 2, pp. 158-160, Jan. 1991.

[8] J. Leclère, C. Botteron, P.-A. Farine, “Comparison

framework of FPGA-based GNSS signals acquisition

architectures”, IEEE Transactions on Aerospace and

Electronic Systems, conditionally accepted.

[9] A.V. Oppenheim, R.W. Schafer, “Discrete-time

signal processing”, Prentice Hall, 2009.

[10] E.O. Brigham, “The fast Fourier transform and its

applications”, Prentice Hall, 1988.

[11] J.O. Smith III, “Mathematics of the discrete Fourier

transform (DFT), with audio applications”, W3K

Publishing, 2007.

[12] R.G. Lyons, “Understanding digital signal processing

”, Prentice Hall, 2010.

[13] P.P. Vaidyanathan, “Multirate digital filters, filter

banks, polyphase networks, and applications: a

tutorial”, Proceedings of the IEEE, vol. 78, no. 1, pp.

56-93, Jan 1990.

[14] Z.-J. Mou, P. Duhamel, “Short-length FIR filters and

their use in fast nonrecursive filtering”, IEEE

Transactions on Signal Processing, vol. 39, no. 6, pp.

1322-1332, June 1991.

[15] D.A. Parker, K.K. Parhi, “Low-area/power parallel

FIR digital filter implementations”, The Journal of

VLSI Signal Processing, vol. 17, no. 1, pp. 75-92,

Sept. 1997.

[16] S. Winograd, “Arithmetic complexity of computation

”, CBMS-NSF Regional Conference Series in

Applied Mathematics, SIAM Publications, 1980.

[17] H.J. Nussbaumer, “Fast Fourier transform and

convolution algorithms”, Springer Series in

Information Sciences, 1982.

[18] Altera, “FFT megacore function user guide”, 2011.

[19] Altera, “Integer arithmetic megafunctions user

guide”, 2012.

APPENDIX A : CODE REPLICA GENERATION

A.1 Traditional generation

An NCO is a counter with a step specifying the frequency

of the output signal, as shown by Eq. (13), where M is the

step, B the number of bits used for the counter, and fs the

sampling frequency, at which runs the NCO [2].

 2
2

Bcode

code sB

s

fM
f f M

f
   (13)

At each overflow of the counter, a new chip of the PRN

code is generated. The implementation of an NCO is

shown in Fig. 15, and the timing diagram in Fig. 16 with

fs = 2.048 MHz, fcode = 1.023 MHz, B = 32 and thus M =

2,145,386,496.

M

value

overflow
chip

Adder

 z–1

Adder

 z
–1

Fig. 15 : Implementation of an NCO

clock

value - ∙∙∙2145386496

overflow - 0 0

chip - 0 0 1 1

4290772992 2141192192 4286578688

1 0 1

2136997888

2

∙∙∙

∙∙∙

0

0

0

Fig. 16 : Timing diagram of an NCO

A.2 Parallel generation of even and odd samples

From Fig. 17, it can be seen that to generate

simultaneously even and odd samples of the replica, we

need two NCOs with different starting values and the

same increment, 2M. The corresponding schematic is

shown in Fig. 18, where the value at the bottom right of

the adder is the value of the output at reset.
clock

value - ∙∙∙M 2M 3M 4M 5M0

value0 - ∙∙∙2M 4M 6M 8M 10M0

value1 - ∙∙∙3M 5M 7M 9M 11MM

Fig. 17 : Timing diagram of an NCO generating even

and odd samples simultaneously

2M

value0

overflow0
chip0

Adder

 z
–1

Adder

 z
–1

value1

overflow1
chip1

Adder

 z
–1

Adder

 z
–1

0

M

0

0

Fig. 18 : Implementation of an NCO generating even

and odd samples simultaneously

Presented at ION GNSS 2012, Session D3, Nashville, TN, USA, September 17-21, 2012.

10

A.3 Parallel generation of 2 consecutive periods

If the number of samples per code period is an integer,

such as in the previous case where there are exactly 2048

samples during one period composed of 1023 chips, the

samples of the different periods will be identical, i.e. the

j
th

 samples of any period is the same as the j
th

 sample of

the first period. Consequently, two consecutive periods

are identical and a classical NCO can be used.

If the number of samples per code period is not an integer,

the samples of the different periods will be different.

Consequently, this requires a modified NCO to generate

two consecutive periods.

After 1 cycle, the NCO value is M mod 2
B
 , after 2 cycles

it is 2M mod 2
B
, and thus after k cycles it is kM mod 2

B
.

If k=2
K
, this means that the value is shifted to the left K

times. The modulo operation with 2
B
 means that we keep

the B least significant bits (LSBs) of the value. We can

thus infer the NCO value after k cycles, by taking the B-K

LSBs of the increment, and shifting it K times (or shifting

the increment K times and taking the B LSBs of the

result).

It thus requires two NCO based on the same increment,

with different starting values. Fig. 19 shows the timing

diagram with fs = 2.048 MHz, fcode = 1.023001 MHz, B =

32 and thus M = 2,145,388,593 and M0 = kM mod 2
B
 =

4294656. For the next periods, the starting value of the

adder should be updated with 2M0 and 3M0, then with

4M0 and 5M0, etc., which requires each times two

additions. The corresponding schematic is shown in Fig.

20.

clock

valueA - ∙∙∙2145388593

overflowA - 0 0

chipA - 0 0 1 1

4290777186 2141198483 4286587076

1 0 1

2137008373

2

∙∙∙

∙∙∙

0

0

0

valueB - ∙∙∙2149683249

overflowB - 0 1

chipB - 0 1 1 1

104546 2145493139 4290881732

0 0 1

2141303029

2

∙∙∙

∙∙∙

4294656

0

0

Fig. 19 : Timing diagram of an NCO generating

consecutive periods simultaneously

value0

overflow0
chip0

Adder

 z
–1

Adder

 z
–1

value1

overflow1
chip1

Adder

 z
–1

Adder

 z
–1

xM0

(x+1)M0

0

0

M

Fig. 20 : Implementation of an NCO generating

consecutive periods simultaneously

APPENDIX B

Let us assume that h0[n] and h1[n] are two real sequences

of N points, and H0[k] and H1[k] are their corresponding

DFT. We can create a new sequence h[n] = h0[n] + j h1[n],

H[k] being its corresponding DFT. H0[k] and H1[k] can be

obtained from H[k], as shown by the following equations

[12].

   

   

*

0

[] []
[]

2

Re [] Re []

2

Im [] Im []

2

H N k H k
H k

H N k H k

H k H N k
j

 


 


 


 (14)

   

   

*

1

[] []
[]

2

Im [] Im []

2

Re [] Re []

2

H N k H k
H k j

H k H N k

H N k H k
j

 


 







 (15)

Regarding the hardware implementation, since we have to

add and subtract one sequence with its N-k reverse, we

need to buffer the data. The corresponding timing

diagram is shown in Fig. 21. It can be seen that the

writing of the samples of the second period starts while

the reading of the reversed samples of the first period is

not yet finished. This implies the use of two memories of

N complex words, with a write access and a double read

access, which will be written and read alternatively. The

corresponding schematic is shown in Fig. 22. The

combination block is composed of four real adders,

equivalent to two complex adders, according to Eqs. (14)

and (15). Note that this implementation requires an extra

latency of N cycles compared to the use of two FFTs.

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

clock

H[k] H[0]- H[N-2] H[N-1]H[1]

0 1 N-2 N-1w@1 -

0 1r@D -

N-1r@R -

H[0]- H[N-2] H[N-1]H[1]H’[k]

H’[N-k] - H[N-1]

0

H[0] H[2] H[1]

N-2 N-1

12

H[0] H[N-2] H[N-1]H[1]

0 1

N-10

H[0] H[1]

H[N-1]H[0]

H[0] H[1]

0 1

∙∙∙H0[0]- H0[N-2] H0[N-1]H0[1]H0[k]

H1[k] -

H0[0] H0[1]

∙∙∙H1[0] H1[N-2] H1[N-1]H1[1] H1[0] H1[1]

∙∙∙w@2 - 0 1 N-2 N-1

-

-

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

Fig. 21 : Timing diagram to perform two real FFTs

using one complex FFT

h0[n]

+

j h1[n] H’[k]

H’[N-k] H1[k]

H0[k]

Memory
2N words

Memory

2 N

Memory

1 N
H[k]

FFT
N Combination

w@2

w@1

r@R

r@D

Fig. 22 : Schematic to perform two real FFTs using

one complex FFT

Presented at ION GNSS 2012, Session D3, Nashville, TN, USA, September 17-21, 2012.

11

APPENDIX C

Table 8 : FFT resources on Stratix III FPGA estimated by the Altera Wizard

Implementation
Number

of points

Number of ALUTs

(Adaptive LUT, 2 ALUTs =

1 ALM)

Number of M9Ks
Number of DSP 18-bit

elements

12 bit 14 bit 16 bit 18 bit 12 bit 14 bit 16 bit 18 bit 12 bit 14 bit 16 bit 18 bit

F4

256 2736 3048 3591 4265 11 11 11 11 24 24 24 24

512 2996 3368 3969 4636 11 11 11 11 24 24 24 24

1024 3435 3864 4523 5248 19 19 19 19 24 24 24 24

2048 4256 4744 5692 6906 38 38 38 38 48 48 48 48

4096 4570 5093 6077 7326 57 76 76 76 48 48 48 48

8192 4400 4888 5836 7050 114 133 152 152 48 48 48 48

16384 4720 5243 6227 7477 209 247 285 304 48 48 48 48

32768 4544 5032 5980 7194 418 475 551 608 48 48 48 48

V

(natural to bit-

reversed)

256 4089 4483 4877 5271 1 2 2 2 16 16 20 24

512 4856 5296 5736 6176 2 3 3 3 24 24 28 32

1024 5460 8930 6400 6870 4 5 6 6 24 24 28 32

2048 6211 6735 7259 7783 8 9 11 12 32 32 36 40

4096 6860 7418 7976 8534 16 18 21 23 32 32 36 40

8192 7348 7906 8464 9022 32 36 41 45 40 40 44 48

16384 7848 8406 8964 9522 63 72 81 90 40 40 44 48

32768 9297 10043 10789 11535 125 143 161 179 48 48 52 56

V

(bit-reversed to

natural)

256 4089 4483 4877 5271 2 2 2 2 16 16 20 24

512 4856 5296 5736 6176 3 4 4 4 24 24 28 32

1024 5460 8930 6400 6870 7 7 8 8 24 24 28 32

2048 6211 6735 7259 7783 13 14 15 17 32 32 36 40

4096 6860 7418 7976 8534 27 29 31 34 32 32 36 40

8192 7348 7906 8464 9022 57 61 66 70 40 40 44 48

16384 7848 8406 8964 9522 117 126 135 144 40 40 44 48

32768 9297 10043 10789 11535 244 262 274 298 48 48 52 56

Table 9 : FFT resources after compilation using a resolution of 18 bits

Implementation
Number

of points

Stratix III FPGA Cyclone III FPGA

Number of

ALMs

Number of

M9Ks

Number of

DSP 18-bit

elements

Number of

LEs

Number of

M9Ks

Number of

DSP 18-bit

elements

F4

512 2735 20 12 5637 20 12

1024 3953 20 12 5932 20 12

2048 3854 39 24 7436 39 24

F3

512 - - - 6455 20 9

1024 - - - 6769 20 9

2048 - - - 9133 39 18

V

(natural to bit-

reversed)

512 3231 11 16 5490 21 16

1024 3546 14 16 5947 26 16

2048 4209 19 20 6828 33 20

V

(bit-reversed to

natural)

512 3238 11 16 5447 22 16

1024 3504 14 16 5912 25 16

2048 4030 21 20 6735 34 20

