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ABSTRACT 

This paper proposes alternative architectures to perform a 

circular correlation using the Fast Fourier Transform 

(FFT) by decomposing the initial circular correlation into 

several smaller circular correlations. The approach used is 

similar to the Fast Finite Impulse Response (FIR) 

Algorithms (FFAs). These architectures improve the 

performance in terms of reduced processing time or 

resource usage, and consequently lower the energy 

consumption. 

The results can be applied to any system that performs 

circular convolution or correlation. In this paper, the 

application is the acquisition of Global Navigation 

Satellite System (GNSS) signals with the FFT-based 

Parallel Code-phase Search (PCS), and more precisely on 

the GPS L1 C/A signal, when the target considered is a 

Field Programmable Gate Array (FPGA). 

In this context, it is for example shown that it is possible 

with one of the proposed architectures to reduce the logic 

usage by 11 %, the memory usage by 41 %, and the 

Digital Signal Processing (DSP) block usage by 32 %, 

while keeping the same processing time. With another 

architecture, it is shown that the processing time can be 

halved by increasing the logic usage by only 35 %, while 

reducing the memory usage and keeping the same DSP 

usage. 

Note that the proposed approach is not based on an 

approximation of the traditional method, but a modified 

implementation providing the same result. Thus, there is 

no loss of sensitivity. 

1. INTRODUCTION 

The acquisition of GNSS signals consists mainly in three 

steps : 1) multiplication of the input signal with a local 

carrier replica to remove the offset in frequency due to the 

Doppler effect, 2) multiplication with a local pseudo-

random noise (PRN) code replica; 3) Integration. The 

process has to be repeated for different carrier frequencies 

and code phases of the replicas until they are both aligned 

with the received ones. This is thus a two-dimension 

search (for each satellite). Together, the last two steps are 

equivalent to a circular correlation (due to the code 

repetition). As a consequence, the FFT can be used to 

compute it. This enables getting the correlation result for 

all the code-phases simultaneously. This is known as 

Parallel Code-phase Search acquisition. 

However, the processing time can still be relatively long, 

because of : 1) the different carrier frequencies to test; 2) 

the results over dozens or hundreds of code periods that 

are usually accumulated to increase the sensitivity; 3) the 

process has to be repeated for several satellites (up to a 

few dozens, if there is no a priori information and several 

constellations are considered). Therefore, finding new 

methods to perform the search faster is still topical. 

Within this context, we use an approach that consists in 

decomposing the initial circular correlation into several 
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smaller circular correlations. This approach is similar to 

the FFAs, and the idea to combine it with the FFT to 

perform convolution was briefly described in [1], but the 

algorithms proposed were not optimal and no deep study 

was undertaken. 

Therefore, in this paper we propose and study several 

architectures using different numbers of FFTs that lead to 

different performance results. Among them, one 

architecture enables reducing the resources while keeping 

the same processing time, whereas others enable reducing 

the processing time, at the expense of an increase in 

resources. 

The rest of the paper is organized as follows : In Section 

2, a fast review of the acquisition of GNSS signals is 

given. Section 3 shows how the FFT can be used to 

compute a circular correlation. Section 4 shows how the 

processing time can be reduced by duplicating elements. 

Section 5 presents the FFA principle and provides 

different architectures to reduce the processing time or the 

resource usage. Section 6 discusses briefly the impact on 

the energy consumption. In Section 7, an application 

example is discussed, providing details about the FPGAs 

and models used for the FFT and other functions. Results 

are first obtained using the models presented, and then 

checked with a real implementation of two architectures. 

Section 8 summarizes some important results and 

concludes on the impact of the proposed architectures. 

2. ACQUISITION OF GNSS SIGNALS 

Signals transmitted by GNSS satellites are a combination 

of a carrier, one or several PRN codes specific to each 

satellite, and a navigation data message [2]. When 

reaching the GNSS receiver, the frequency of the carrier 

(and of the PRN code) is different for each satellite 

because of the Doppler effect, and the phase of the code is 

unknown since the distance from the satellites is unknown 

assuming no a priori synchronization. 

After down-conversion and digitization, the GNSS 

receiver performs an acquisition, which consists in 

multiplying the signal s[n] by a carrier replica of the same 

frequency; then multiplying by a code replica of the same 

phase (and same frequency), c[n-τ], where τ is a delay; 

and then integrating the result over time to raise the signal 

out of the noise [3]. The last two steps are equivalent to a 

circular correlation (due to the code repetition). 

The corresponding schematic is shown in Fig. 1, where it 

can be noted that the process repeats for different phases 

of the code (τ belongs to T) and different carrier 

frequencies called bins (f belong to F). Τ and F depend on 

the context, such as the PRN code length, the signal 

modulation, the carrier frequency, the integration time or 

a priori information. For example, considering the GPS 

L1 C/A signal which PRN code is 1023-chip long 

(corresponding to 1 ms) and the frequency range of about 

± 5 kHz (for a static user, and not including the offset of 

the receiver oscillator [4]), the code-phase step will be 

typically ½ chip resulting in 2046 code bins; and the 

frequency step will be typically 500 Hz for a coherent 

integration time of 1 ms leading to 21 frequency bins [4]. 

The search can be parallelized in the frequency space by 

looking at several or all the frequency bins using an FFT : 

this is called Parallel Frequency Search [5][6]. The search 

can also be parallelized in the code space, by using the 

FFT to get the correlation result for all the code bins 

simultaneously : this is the Parallel Code-phase Search 

(PCS) [7]. A description of these methods and their 

implementation on FPGAs can be found in [8]. In the 

following, we concentrate on the PCS, which is described 

in the next section. 

s[n]

e 
j2πfn c[n-τ]

∑ 
rf,τ[n]

repeat for τ ∈ Τ 

repeat for f ∈ F

correlation
 

Fig. 1 : Principle of the acquisition of GNSS signals 

3. CIRCULAR CORRELATION USING FFT 

The circular correlation between two finite-length 

sequences x[n] and h[n] (corresponding to the input signal 

and code replica in our case, respectively), is defined by 

Eq. (1), where N is the number of samples in one period 

of the PRN code and 
*
 denotes the conjugate. 
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In z domain formulation, the correlation becomes a 

product of two polynomials [9]. 
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The Discrete Fourier Transform (DFT) of y[n] can be 

obtained by evaluating Y(z) in z = e
j2πk/N

, and we obtain 

      *
DFT [ ] DFT [ ] DFT [ ]y n x n h n  (3) 

Using the FFT algorithm to implement the DFT [10], the 

circular correlation can thus be obtained using the Inverse 

FFT (IFFT), as shown by Eq. (4). 

    *
[ ] IFFT FFT [ ]  FFT [ ]y n x n h n     (4) 

In the GNSS context, the code replica is real (for 

quadrature signals such as L5 and E5, the codes of pilot 

and data channels can be generated as complex or 

separately as real as well). Using this property and the 

fact that the conjugate of the FFT of a sequence is equal 

to the IFFT of the conjugate of the same sequence [11], 

Eq. (4) can be simplified to Eq. (5). 

     [ ] IFFT FFT [ ]  IFFT [ ]y n x n h n  (5) 

The circular correlation can thus be performed using one 

N-point FFT, and two N-point IFFTs, as shown in Fig. 2. 

For the following, the architectures will be denoted as 

P−T−N−M, where P corresponds to ratio between the 

processing time of the traditional architecture provided in 

this section and the processing time of the architectures 

(neglecting the latency); T to the number of FFTs and 

IFFTs used; N to the transform length of the FFTs; and M 
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to the number of complex multipliers used. The 

traditional architecture can thus be denoted as 1−3−N−1. 

A simplified timing diagram is shown in Fig. 3, where the 

different code periods are represented by different colors. 

Considering that an FFT has a latency of N + L cycles, L 

being an intrinsic latency linked to the FFT 

implementation, the K
th

 correlation result is thus available 

after KN + 2N + 2L cycles. 

x[n]

h[n]

y[n]

H*[k]

X[k] Y[k]
FFT

IFFT

IFFT

N

N N  
Fig. 2 : Circular correlation using FFT 

(architecture 1−3−N−1) 

h[n]

H*[k]

X[k]

Y[k]

y[n]
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Y Y Y

y y y

N

H* H* H*

X X X

x[n] x x x

h

x

H*

Y

X

y

LL  
Fig. 3 : Timing diagram of the traditional architecture 

(1−3−N−1) 

4. REDUCTION OF THE PROCESSING TIME BY 

DUPLICATION 

4.1 Initial Approach 

One of the solutions to reduce the processing time is to 

duplicate the architecture, as shown in Fig. 4, where the 

top branch can process the even periods of the code, and 

the bottom one the odd periods. 

In this case the processing time is halved (considering an 

even number of correlation result), since the K
th

 

correlation result is available after / 2 2 2K N N L     

cycles (see timing diagram in Fig. 5), but the resources 

are doubled. In fact, the resources are slightly more than 

doubled due to the extra adder and the modified 

generation of the code replica. Indeed, this architecture 

requires the generation of two consecutive periods of the 

replica simultaneously (see Appendix A for more details 

on code replica generation). 

xA[n]

hA[n]

yA[n]

xB[n]

hB[n]

yB[n]

FFT

IFFT

IFFT

FFT

IFFT

IFFT

y[n]

N

N

N

N

N

N

HA
*[k]

XA[k]

HB
*[k]

XB[k]

YA[k]

YB[k]

 
Fig. 4 : Duplication of the traditional architecture 

(architecture 2−6−N−2) 
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Fig. 5 : Timing diagram when the traditional 

architecture is duplicated (architecture 2−6−N−2) 

4.2 Use of the real property of the PRN code replica 

h[n] 

It is known that the FFTs of two real sequences can be 

performed using only one FFT at the expense of a 

recombination afterwards [12] (details on implementation 

are given in Appendix B). Using this principle, we can 

thus use one FFT for hA[n] and hB[n], and obtain the 

architecture shown in Fig. 6. However, this trick increases 

the global latency by N cycles, and the K
th

 correlation 

result is now available after / 2 3 2K N N L     cycles 

(see timing diagram in Fig. 7). 

h[n] =

hA[n] + j hB[n] 

xA[n] yA[n]

xB[n] yB[n]

y[n]
H’[k]

H’[N-k]

FFT

FFT IFFT

FFT IFFT

N

N

N

Memory
2N

Combination

N

N

XA[k]

XB[k]

XA[k]

XB[k]

H[k]
HA

*[k]

HB
*[k]

 
Fig. 6 : Modification of the architecture 2−6−N−2 into 

an architecture 2−5−N−2 
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Fig. 7 : Timing diagram of the architecture 2−5−N−2 
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5. FAST FIR ALGORITHMS 

5.1 Introduction to FFAs 

Using the polyphase decomposition of filters [13], it is 

possible to obtain more efficient structures for FIR filters 

by parallelizing the processing and removing redundant 

computations [14][15]. A FIR filter performs a 

convolution, which is related to correlation; consequently 

we can apply the concept to the PCS. 

5.2 Separation in two 

5.2.1 Initial Approach 

We start by using the following polyphase representation 

(which corresponds to a separation of the signals into 

even and odd samples) : 
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and i ∈ {0, 1}. Using Eq. (6), we can thus reformulate Eq. 

(2) as (the modulo operation is not shown) : 
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Evaluating these relations in z = e
j2πk/N

, we obtain 
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and i ∈ {0, 1}. The corresponding architecture is shown in 

Fig. 8. The number of FFTs is doubled compared to the 

traditional architecture, however the transform length is 

halved, and there are now 5 multipliers and 2 adders. 

A simplified timing diagram of this architecture is shown 

in Fig. 9. The K
th

 correlation result is available after KN/2 

+ N + 2L cycles. 

Similarly as for the architectures using duplication, this 

architecture requires a modified generation of the code 

replica, since two consecutive samples of the replica must 

be generated simultaneously (see Appendix A). 

x0[n]

x1[n]

h0[n]

h1[n]

y0[n]

y1[n]

X0[k]

X1[k]

H0
*[k]

H1
*[k]

FFT

FFT

IFFT

IFFT

IFFT

e 
j2πk/(N/2)

IFFT

N/2

N/2

N/2

N/2

N/2

N/2

Fig. 8 : FFA-based circular correlation 

(architecture 2−6−N/2−5) 
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i ∈{0;1}

LL  
Fig. 9 : Timing diagram of the FFA-based architecture 

2−6−N/2−5 

5.2.2 Reduction of multipliers 

It is possible to reduce the number of multipliers at the 

expense of extra adders, as detailed in [14] and [15]. This 

is interesting because multipliers cost more than adders in 

terms of hardware. A possible solution is given in Eq. 

(11). 
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The corresponding architecture is shown in Fig. 10. 

x0[n]

x1[n]

h0[n]

h1[n]

y0[n]

y1[n]
FFT

FFT

IFFT

IFFT

IFFT

IFFT

X1[k]

X0[k]

H0
*[k]

H1
*[k]

N/2

N/2

N/2

N/2

N/2

N/2

e 
j2πk/(N/2)

–

–

Y0[k]

Y1[k]

 
Fig. 10

1
 : FFA-based circular correlation with reduced 

number of multipliers (architecture 2−6−N/2−4) 

1
 This figure contains two typo errors : Y0[k] and Y1[k] are 

inverted, as well as y0[n] and y1[n]. 



Presented at ION GNSS 2012, Session D3, Nashville, TN, USA, September 17-21, 2012. 

5 

There are now 4 multipliers, 5 adders and the generation 

of an exponential is required (typically using a 

Numerically Controlled Oscillator, or NCO). The timing 

diagram is not affected as compared to the architecture 

2−6−N/2−5. 

5.2.3 Use of the real property of the PRN code replica 

h[n] 

As described in Section 4.2, we can use only one FFT for 

h0[n] and h1[n], and obtain the architecture shown in Fig. 

11 with the corresponding timing diagram in Fig. 12. The 

K
th

 correlation result is now available after KN/2 + 3N/2 

+ 2L cycles. 

Compared to the architecture 2−5−N−2, there are as many 

FFTs but the transform length is halved. We can thus 

expect that this architecture is more efficient, even if it 

has 2 extra multipliers and 4 extra adders. 

x0[n]

x1[n]

y0[n]

y1[n]
FFT

FFT

IFFT

IFFT

X1[k]

X0[k]

N/2

N/2

N/2

N/2

e 
j2πk/(N/2)

–

–

Y0[k]

Y1[k]

h[n] =

h0[n] + j h1[n] 

H’[k]

H’[N-k]

FFT
N/2

Memory
N

Combination
H[k]

H0
*[k]

H1
*[k]

 
Fig. 11

1
 : Modification of the architecture 2−6−N/2−4 

into an architecture 2−5−N/2−4 
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xi xi
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Yi[k] Yi Yi Yi YiYi
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*
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Xi[k] Xi Xi Xi XiXi Xi

i ∈{0;1}

LL  
Fig. 12 : Timing diagram of the FFA-based 

architecture 2−5−N/2−4 

5.3 Separation in P 

The same principle can be applied to split the signals in 3, 

4, or any value. For a splitting in P (which means a 

reduction of the processing time by P), when the number 

of multipliers and FFTs is not reduced (as architecture 

2−6−N/2−5), the resulting architecture is composed of 

- 3P (I)FFTs of N/P points 

- P
2 

+ P – 1 multipliers (P² for the products 

between the Hi and Xj, and P – 1 for the products 

with the exponential) 

- P (P – 1) adders 

- 1 NCO 

As shown in Section 5.2.2, the number of multipliers can 

be reduced. The optimal reduction provides the minimum 

number of multipliers, which is 3P – 2 (2P – 1 for the 

products between the Hi and Xj [16][17], and P – 1 for the 

products with the exponential). However, for large P, the 

number of extra adders becomes excessive. 

It is then possible to use sub-optimal algorithms that still 

reduce the number of multipliers while keeping the 

increase of extra adders moderate [14][15]. Table 1 gives 

the complexity for the first values of P. It can be seen that 

for P = 2, the sub-optimal reduction gives the same result 

as the optimal reduction. 

Table 1 : Complexity of different FFAs 

 P 

Number of 

complex 

multipliers 

Number of 

complex adders 

No 

reduction of 

multipliers 

2 5 2 

3 11 6 

4 19 12 

Sub-optimal 

reduction of 

multipliers 

2 4 5 

3 8 13 

4 13 25 

Optimal 

reduction of 

multipliers 

2 4 5 

3 7 25 

4 10 78 

5.4 Application to reduce resources 

The FFA algorithm can also be used to reduce the 

resources when time multiplexing is applied. An example 

is shown in Fig. 13, with the corresponding timing 

diagram in Fig. 14. The combination algorithm to obtain 

Y0[k] and Y1[k] can be one of the previously presented 

(Eq. (9) or (11)) or an equivalent one, this is why the 

value of M is not specified in the caption of Fig. 13. 

First the inputs s0[n] and s1[n] take the value of the code 

replica, h0[n] and h1[n], their FFT is computed and stored 

in memory. During the storage, the inputs take the value 

of the input signal, x0[n] and x1[n]. When their FFTs are 

available, the memories are read, the products and 

combination between the Hi[k] and the Xi[k] are 

performed to obtain Y0[k] and Y1[k]. The IFFT of Y0[k] is 

computed while Y1[k] is stored in memory. Then the 

memory is read and the IFFT of Y1[k] is computed. 

This architecture requires only 3 N/2-point FFTs and two 

memories (Y1[k] can be stored in one of the memories 

used for H0
*
[k] and H1

*
[k] because the writing/reading 

accesses do not overlap). The throughput of this 

architecture is identical to the one of the traditional 

architecture, and the latency is slightly reduced, since the 

K
th

 correlation result is available after KN+3N/2+2L. 
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Y[k]

M0[k]

M1[k]
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N/2
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Memory
N/2
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N/2
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Fig. 13 : FFA-based architecture to reduce resources 

(architecture 1−3−N/2−M) 

1
 This figure contains two typo errors : Y0[k] and Y1[k] are 

inverted, as well as y0[n] and y1[n]. 
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* Hi

*

xihi

i ∈{0;1}

LL  
Fig. 14 : Timing diagram of the FFA-based 

architecture to reduce resources 

(architecture 1−3−N/2−M) 

6. REDUCTION OF THE ENERGY 

CONSUMPTION 

The proposed architectures also have a positive impact on 

the energy consumption compared to the traditional 

architecture. The energy consumption is the product of 

the processing time with the power consumption. The 

latter is proportional to the resources with a 1 to 1 ratio. 

Consequently, the reduction of the power consumption is 

obtained naturally for the architectures that have reduced 

resources. Since the processing time is unchanged, the 

energy consumption is also reduced. 

For the architectures that reduce the processing time, if 

the increase of resources is lower than the decrease of the 

processing time, the energy consumption will also be 

reduced. For example, if we consider an architecture that 

halves the processing time while the resources are 

increased by 50 %, its energy consumption will be 75 % 

of that of the initial architecture. 

7. APPLICATION EXAMPLE 

This section presents a comparison of the different 

architectures when implemented on FPGAs. A low-cost 

FPGA family (Altera Cyclone III EP3C120) and a high-

end FPGA family (Altera Stratix III EP3SE260) are 

investigated. The GPS L1 C/A signal is considered. The 

main lobe of this signal is within 2.046 MHz, we consider 

thus a sampling frequency of 2.048 MHz, i.e. N = 2048. 

We first use models to determine the resource usage of 

the different functions in the architectures (FFT, 

multiplier, adder, memory). Except for the FFT, whose 

model is based on estimates from Altera, the models are 

quite straightforward and have been checked empirically. 

Then, a real implementation of two architectures is done 

to verify the accuracy of the models. 

7.1 FPGA Resources 

An FPGA is a programmable device containing three 

main types of elements : 

- Logic block : This is a small block containing a 

Look-Up Table (LUT) enabling the creation of logic 

functions, a full adder, and one or several registers. 

This basis block is different for each manufacturer 

and even between some FPGA families 

- Memory block : This is a small size memory 

(typically between 0.5 and 128 Kibit), having 

multiple ports. 

- Digital Signal Processing (DSP) block : This is a 

block containing several hardware multipliers 

(typically 18 × 18 bits). 

To compare the different architectures, we will thus 

consider the three above elements. 

In addition to the resource usage of the architectures, we 

also consider the product resource-processing time, which 

corresponds to the energy consumption. Thus, to compare 

fairly the architectures, we define the energy efficiency as 

the ratio of the energy consumption of the traditional 

architecture over the energy consumption of the 

considered architecture : 

 ,
ref ref ref

E R T
e

E RT
   (12) 

where Eref, Rref, Tref, E, R, and T are the energy 

consumption, the resource and the processing time of the 

traditional architecture and of the considered architecture, 

respectively. The traditional architecture has thus an 

energy efficiency of 1. For the other architectures, the 

greater is the value, the more efficient is the architecture. 

7.2 Model for FFT 

Altera proposes several ways to implement an FFT [18]. 

Considering only the streaming implementation and not 

the buffered ones (because the computation speed is the 

core of the study), there are two options, fixed streaming, 

and variable streaming. 

Fixed streaming uses the block-floating point arithmetic, 

receives and outputs the data in natural order only, and 

can implement a complex multiplication using 4 real 

multipliers and 2 real adders (conventional 

representation), or using 3 real multipliers and 5 real 

adders (canonical representation). 

Variable streaming uses a fixed point arithmetic, and has 

the possibility to receive or output data in bit-reversed 

order [8][12]. This is a great advantage since it 

economizes memory resources and reduces the latency. 

However, variable streaming does not offer the choice of 

the implementation of complex multiplications. 

In Appendix C, we provide a table that summarizes the 

logic, memory and DSP resources consumption for Stratix 

III FPGAs for different transform lengths and resolutions. 

This is an estimation obtained from the Altera Wizard. 

The real resource consumption will depend on the FPGA 

chosen, the system implemented and the optimizations 

selected. However, some observations can be made. 

- Doubling the transform length roughly doubles the 

memory resources, except for some cases where the 

increase is lower. 

- For fixed streaming, doubling the transform length 

does not change the number of DSP elements, 

except between 1024 and 2048 points where the 

number is doubled. 

- For the variable streaming, in half of the cases 

doubling the transform length does not change the 

number of DSP elements, for the other half there is 

an increase between 16 % and 50 %. 

- Regarding the logic elements, doubling the 

transform length increase the resources by 11 % on 

average. 
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From these observations, it can be inferred that the 

performance of the different architectures will vary 

according to the initial transform length and the resolution 

used. 

To be more precise in our estimates, we have measured 

the resource consumption of the FFT after compilation for 

the cases we considered, namely 512, 1024 and 2048 

points, with a resolution of 18 bits. The table is provided 

in Appendix C. 

7.3 Model for other functions 

For the complex multiplications, two models are used. For 

Stratix III FPGAs, only the conventional representation is 

possible [19], a complex multiplication requires thus four 

real multipliers and no extra logic (the two real adders are 

already included in the DSP blocks). For Cyclone III 

FPGA, the canonical representation can be used; a 

complex multiplication requires thus three real multipliers 

and the equivalent of 8 real adders of R bits, where R is 

the resolution of the signals used for the complex 

multiplication. 

Regarding the complex addition, it corresponds to two 

real additions. And a real addition requires R logic 

elements (LEs, basis block of Cyclone III FPGA), or R/2 

adaptive logic module (ALMs, basis block of Stratix III 

FPGA), where R is the resolution of the signals used for 

the addition. 

Regarding the memory, it is easy to estimate the 

requirements knowing the number of samples to store and 

their resolution. 

7.4 Results from FPGA models 

Based on the previously described models, we have 

computed the estimated resource usage for different 

architectures (enumerated in Table 2 to Table 5). For each 

architecture, we have considered the different possible 

implementations for the FFT : 

- Fixed streaming, and a complex multiplier using 

4 real multipliers, denoted as F4. 

- Fixed streaming, and a complex multiplier using 

3 real multipliers, denoted as F3. 

- Variable streaming, and using of natural and bit-

reversed order, denoted V. 

The F3 case is considered only for Cyclone III FPGAs, 

since the canonical representation is not available on 

Stratix III. The case of variable streaming with natural 

order for the input and the output is not shown because 

the logic and memory usage is always higher than for the 

case of variable streaming with natural and bit-reversed 

order. 

The summary of the resource usage and energy efficiency 

of the architectures is provided for Stratix III FPGAs in 

Table 2 and Table 3, respectively, and for Cyclone 

FPGAs in Table 4 and Table 5, respectively. The ALM 

and LE columns represents the logic resources usage, the 

M9K column the number of 9216-bit memories used, and 

the last column the number of DSP 18-bit elements used 

(1 element corresponding to one 18-bit multiplier). 

The traditional architecture is the 1−3−2048−1, with an 

energy efficiency of 1. From Table 2 and Table 4, it can 

be seen that the architecture 1−3−1024−4 uses effectively 

less resources than the traditional one, except for the V 

implementation of the FFT on Cyclone III FPGAs, which 

consumes 3% more of LEs. The most efficient 

architecture regarding the logic usage is the 

4−10−512−13; the most efficient regarding the memory 

usage are the 4−10−512−13 and 4−10−512−10; and the 

most efficient regarding the DSP usage is the 

2−5−1024−4. 

It can be noted that the architecture 2−5−1024 uses less 

memory than the traditional architecture for the F4 and F3 

implementations of the FFT. For Stratix III FPGAs, the 

number of DSP elements is the same, and the logic is 

increased by only 40 %. For Cyclone III FPGAs, the 

number of DSP elements is lower considering the F4 

implementation of the FFT, and equal considering the F3 

implementation of the FFT, for an increase of the logic by 

47 % and 35 %, respectively. 

Table 2 : Resource usage (model-based) of the 

architectures for Stratix III FPGA 

Architecture 

(see §3) 

Number of 

ALMs 

Number of 

M9Ks 

Number of 

DSP 18-bit 

elements 

P−T−N−M F4 V F4 V F4 V 

1−3−1024−4 10305 12042 69 51 52 64 

1−3−2048−1 11562 12448 117 59 76 64 

2−5−2048−2 19332 20749 213 117 128 108 

2−6−1024−4 19100 22574 120 84 88 112 

2−5−1024−4 16198 19079 109 79 76 96 

4−12−512−13 34562 40542 240 132 196 244 

4−12−512−10 35516 41496 240 132 184 232 

4−10−512−13 29178 34166 209 119 172 212 

4−10−512−10 30132 35120 209 119 160 200 

Table 3 : Energy efficiency (model-based) of the 

architectures for Stratix III FPGA. The greater is the 

better. 

Architecture 

(see §3) 
ALMs M9Ks 

DSP 18-bit 

elements 

P−T−N−M F4 V F4 V F4 V 

1−3−1024−4 1.12 1.03 1.70 1.16 1.46 1.00 

1−3−2048−1 1 1 1 1 1 1 

2−5−2048−2 1.20 1.20 1.10 1.01 1.19 1.19 

2−6−1024−4 1.21 1.10 1.95 1.40 1.73 1.14 

2−5−1024−4 1.43 1.30 2.15 1.49 2.00 1.33 

4−12−512−13 1.34 1.23 1.95 1.79 1.55 1.05 

4−12−512−10 1.30 1.20 1.95 1.79 1.65 1.10 

4−10−512−13 1.59 1.46 2.24 1.98 1.77 1.21 

4−10−512−10 1.53 1.42 2.24 1.98 1.90 1.28 
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Table 4 : Resource usage (model-based) of the 

architectures for Cyclone III FPGA. 

Architecture Number of LEs 
Number of 

M9Ks 

Number of 

DSP 18-bit 

elements 

P−T−N−M F4 F3 V F4 F3 V F4 F3 V 

1−3−1024−4 21149 23660 21159 69 69 86 48 39 60 

1−3−2048−1 22452 27543 20535 117 117 100 75 57 63 

2−5−2048−2 37591 46076 34365 213 213 185 126 96 106 

2−6−1024−4 38817 43839 38837 120 120 154 84 66 108 

2−5−1024−4 32987 37172 32992 109 109 137 72 57 92 

4−12−512−13 72885 82701 70949 240 240 256 183 147 231 

4−12−512−10 74361 84177 72425 240 240 256 174 138 222 

4−10−512−13 61782 69962 60140 209 209 223 159 129 199 

4−10−512−10 63258 71438 61616 209 209 223 150 120 190 

Table 5 : Energy efficiency (model-based) of the 

architectures for Cyclone III FPGA. The greater is the 

better. 

Architecture LEs M9Ks 
DSP 18-bit 

elements 

P−T−N−M F4 F3 V F4 F3 V F4 F3 V 

1−3−1024−4 1.06 1.16 0.97 1.70 1.70 1.16 1.56 1.46 1.05 

1−3−2048−1 1 1 1 1 1 1 1 1 1 

2−5−2048−2 1.19 1.20 1.20 1.10 1.10 1.08 1.19 1.19 1.19 

2−6−1024−4 1.16 1.26 1.06 1.95 1.95 1.30 1.79 1.73 1.17 

2−5−1024−4 1.36 1.48 1.24 2.15 2.15 1.46 2.08 2.00 1.37 

4−12−512−13 1.23 1.33 1.16 1.95 1.95 1.56 1.64 1.55 1.09 

4−12−512−10 1.21 1.31 1.13 1.95 1.95 1.56 1.72 1.65 1.14 

4−10−512−13 1.45 1.57 1.37 2.24 2.24 1.79 1.89 1.77 1.27 

4−10−512−10 1.42 1.54 1.33 2.24 2.24 1.79 2.00 1.90 1.33 

7.5 Results from real FPGA implementation 

To validate our models and conclusion, we have 

implemented the architectures 1−3−2048−1 and 

2−5−1024−4 on a Stratix III FGPA using the F4 

implementation of the FFT. Table 6 and Table 7 provide 

in details the resource consumption of both architectures. 

The energy efficiency of the architecture 2−5−1024−4 is 

1.44 regarding the ALMs, 2.17 regarding the M9K, and 

2.00 regarding the DSP elements. As foreseen, this 

architecture outperforms the traditional one, and the 

implementation results are very close to the estimated 

results. 

Table 6 : Resource usage of the traditional 

architecture implemented on Stratix III FPGA 

Function 
Number of 

ALMs 

Number of 

M9Ks 

Number of 

DSP 18-bit 

elements 

IFFT (h) 3652 39 24 

FFT (x) 3596 39 24 

Multiplier 0 0 4 

IFFT (y) 3648 39 24 

Total 10 896 117 76 

Table 7 : Resource usage of the architecture 

2−5−1024−4 implemented on Stratix III FPGA 

Function 
Number of 

ALMs 

Number of 

M9Ks 

Number of 

DSP 18-bit 

elements 

NCO 1240 0 0 

FFT (h) 2748 20 12 

Memory 76 8 0 

FFT (x0) 2747 20 12 

FFT (x1) 2741 20 12 

Combination 91 0 16 

IFFT (y0) 2779 20 12 

IFFT (y1) 2766 20 12 

Total 15 188 108 76 

8. CONCLUSIONS 

In this paper, we have proposed and compared several 

alternative architectures to perform the circular 

correlation using the FFT. Applying these architectures to 

the Parallel Code-phase Search acquisition of the GPS L1 

C/A signal with an FPGA implementation, we have 

shown that they are more efficient than the traditional 

one. More specifically : the proposed architecture 

1−3−1024−1 offers the same processing time as the 

traditional architecture (even slightly less due to reduced 

latency), and reduces at the same time the logic usage by 

11 %, the memory by 41 % and the DSP by 32 %, 

considering the F4 implementation of the FFT on Stratix 

III FPGA; the architecture 2−5−1024−4 halves the 

processing time while reducing the memory resources, 

keeping the same DSP resources, and increasing the logic 

resources by only 35 %, considering the F3 

implementation of the FFT on Cyclone III FPGA; and the 

architecture 4−10−512−13 divides the processing time by 

4 while the memory resources are multiplied by only 

1.79, the DSP by 2.26 and the logic by 2.52, considering 

the F4 implementation of the FFT on Stratix III FPGAs. 

This architecture also provides the best energy efficiency 

between the architectures compared, except for the DSP 

elements, where it is the 2−5−1024−4 that wins. The 

reason is that the 1024-point FFT uses less multipliers 

than the 2048-point FFT, whereas the 1024-point FFT and 

the 512-point FFT use the same number of multipliers 

(see Table 9). This shows the limit of the method, because 

for higher decomposition, the efficiency for DSP and 

logic block will stop increasing due to additional 

multipliers and adders required for the combination. 

Note that the proposed methodology can be applied to any 

system performing circular correlation. 

For future work, we will consider its application to the 

other GNSS signals, together with others techniques, such 

as the overlap-and-add method if the sampling frequency 

does not enable a direct use of a fast algorithm for the 

DFT.  
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APPENDIX A : CODE REPLICA GENERATION 

A.1 Traditional generation 

An NCO is a counter with a step specifying the frequency 

of the output signal, as shown by Eq. (13), where M is the 

step, B the number of bits used for the counter, and fs the 

sampling frequency, at which runs the NCO [2]. 

 2
2

Bcode

code sB

s

fM
f f M

f
    (13) 

At each overflow of the counter, a new chip of the PRN 

code is generated. The implementation of an NCO is 

shown in Fig. 15, and the timing diagram in Fig. 16 with 

fs = 2.048 MHz, fcode = 1.023 MHz, B = 32 and thus M = 

2,145,386,496. 

M

value

overflow
chip

Adder

 z–1

Adder

 z
–1

 
Fig. 15 : Implementation of an NCO 

clock

value - ∙∙∙2145386496
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2136997888

2

∙∙∙

∙∙∙

0

0

0

 
Fig. 16 : Timing diagram of an NCO 

A.2 Parallel generation of even and odd samples 

From Fig. 17, it can be seen that to generate 

simultaneously even and odd samples of the replica, we 

need two NCOs with different starting values and the 

same increment, 2M. The corresponding schematic is 

shown in Fig. 18, where the value at the bottom right of 

the adder is the value of the output at reset. 
clock

value - ∙∙∙M 2M 3M 4M 5M0

value0 - ∙∙∙2M 4M 6M 8M 10M0

value1 - ∙∙∙3M 5M 7M 9M 11MM

 
Fig. 17 : Timing diagram of an NCO generating even 

and odd samples simultaneously 
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–1

Adder
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chip1

Adder

 z
–1

Adder

 z
–1

0

M

0

0

 
Fig. 18 : Implementation of an NCO generating even 

and odd samples simultaneously 
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A.3 Parallel generation of 2 consecutive periods 

If the number of samples per code period is an integer, 

such as in the previous case where there are exactly 2048 

samples during one period composed of 1023 chips, the 

samples of the different periods will be identical, i.e. the 

j
th

 samples of any period is the same as the j
th

 sample of 

the first period. Consequently, two consecutive periods 

are identical and a classical NCO can be used. 

If the number of samples per code period is not an integer, 

the samples of the different periods will be different. 

Consequently, this requires a modified NCO to generate 

two consecutive periods.  

After 1 cycle, the NCO value is M mod 2
B
 , after 2 cycles 

it is 2M mod 2
B
, and thus after k cycles it is kM mod 2

B
. 

If k=2
K
, this means that the value is shifted to the left K 

times. The modulo operation with 2
B
 means that we keep 

the B least significant bits (LSBs) of the value. We can 

thus infer the NCO value after k cycles, by taking the B-K 

LSBs of the increment, and shifting it K times (or shifting 

the increment K times and taking the B LSBs of the 

result). 

It thus requires two NCO based on the same increment, 

with different starting values. Fig. 19 shows the timing 

diagram with fs = 2.048 MHz, fcode = 1.023001 MHz, B = 

32 and thus M = 2,145,388,593 and M0 = kM mod 2
B
 = 

4294656. For the next periods, the starting value of the 

adder should be updated with 2M0 and 3M0, then with 

4M0 and 5M0, etc., which requires each times two 

additions. The corresponding schematic is shown in Fig. 

20. 

clock

valueA - ∙∙∙2145388593

overflowA - 0 0

chipA - 0 0 1 1

4290777186 2141198483 4286587076

1 0 1
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∙∙∙

∙∙∙
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0

0
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overflowB - 0 1

chipB - 0 1 1 1
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2

∙∙∙

∙∙∙

4294656

0

0

 
Fig. 19 : Timing diagram of an NCO generating 

consecutive periods simultaneously 
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Fig. 20 : Implementation of an NCO generating 

consecutive periods simultaneously 

APPENDIX B 

Let us assume that h0[n] and h1[n] are two real sequences 

of N points, and H0[k] and H1[k] are their corresponding 

DFT. We can create a new sequence h[n] = h0[n] + j h1[n], 

H[k] being its corresponding DFT. H0[k] and H1[k] can be 

obtained from H[k], as shown by the following equations 

[12]. 
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Regarding the hardware implementation, since we have to 

add and subtract one sequence with its N-k reverse, we 

need to buffer the data. The corresponding timing 

diagram is shown in Fig. 21. It can be seen that the 

writing of the samples of the second period starts while 

the reading of the reversed samples of the first period is 

not yet finished. This implies the use of two memories of 

N complex words, with a write access and a double read 

access, which will be written and read alternatively. The 

corresponding schematic is shown in Fig. 22. The 

combination block is composed of four real adders, 

equivalent to two complex adders, according to Eqs. (14) 

and (15). Note that this implementation requires an extra 

latency of N cycles compared to the use of two FFTs. 
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Fig. 21 : Timing diagram to perform two real FFTs 

using one complex FFT 
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Fig. 22 : Schematic to perform two real FFTs using 

one complex FFT 
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APPENDIX C 

Table 8 : FFT resources on Stratix III FPGA estimated by the Altera Wizard 

Implementation 
Number 

of points 

Number of ALUTs 

(Adaptive LUT, 2 ALUTs = 

1 ALM) 

Number of M9Ks 
Number of DSP 18-bit 

elements 

12 bit 14 bit 16 bit 18 bit 12 bit 14 bit 16 bit 18 bit 12 bit 14 bit 16 bit 18 bit 

F4 

256 2736 3048 3591 4265 11 11 11 11 24 24 24 24 

512 2996 3368 3969 4636 11 11 11 11 24 24 24 24 

1024 3435 3864 4523 5248 19 19 19 19 24 24 24 24 

2048 4256 4744 5692 6906 38 38 38 38 48 48 48 48 

4096 4570 5093 6077 7326 57 76 76 76 48 48 48 48 

8192 4400 4888 5836 7050 114 133 152 152 48 48 48 48 

16384 4720 5243 6227 7477 209 247 285 304 48 48 48 48 

32768 4544 5032 5980 7194 418 475 551 608 48 48 48 48 

V  

(natural to bit-

reversed) 

256 4089 4483 4877 5271 1 2 2 2 16 16 20 24 

512 4856 5296 5736 6176 2 3 3 3 24 24 28 32 

1024 5460 8930 6400 6870 4 5 6 6 24 24 28 32 

2048 6211 6735 7259 7783 8 9 11 12 32 32 36 40 

4096 6860 7418 7976 8534 16 18 21 23 32 32 36 40 

8192 7348 7906 8464 9022 32 36 41 45 40 40 44 48 

16384 7848 8406 8964 9522 63 72 81 90 40 40 44 48 

32768 9297 10043 10789 11535 125 143 161 179 48 48 52 56 

V 

(bit-reversed to 

natural) 

256 4089 4483 4877 5271 2 2 2 2 16 16 20 24 

512 4856 5296 5736 6176 3 4 4 4 24 24 28 32 

1024 5460 8930 6400 6870 7 7 8 8 24 24 28 32 

2048 6211 6735 7259 7783 13 14 15 17 32 32 36 40 

4096 6860 7418 7976 8534 27 29 31 34 32 32 36 40 

8192 7348 7906 8464 9022 57 61 66 70 40 40 44 48 

16384 7848 8406 8964 9522 117 126 135 144 40 40 44 48 

32768 9297 10043 10789 11535 244 262 274 298 48 48 52 56 

Table 9 : FFT resources after compilation using a resolution of 18 bits 

Implementation 
Number 

of points 

Stratix III FPGA Cyclone III FPGA 

Number of 

ALMs 

Number of 

M9Ks 

Number of 

DSP 18-bit 

elements 

Number of 

LEs 

Number of 

M9Ks 

Number of 

DSP 18-bit 

elements 

F4 

512 2735 20 12 5637 20 12 

1024 3953 20 12 5932 20 12 

2048 3854 39 24 7436 39 24 

F3 

512 - - - 6455 20 9 

1024 - - - 6769 20 9 

2048 - - - 9133 39 18 

V  

(natural to bit-

reversed) 

512 3231 11 16 5490 21 16 

1024 3546 14 16 5947 26 16 

2048 4209 19 20 6828 33 20 

V 

(bit-reversed to 

natural) 

512 3238 11 16 5447 22 16 

1024 3504 14 16 5912 25 16 

2048 4030 21 20 6735 34 20 

 


