Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Analysis of the accessibility of CLIP bound sites reveals that nucleation of the miRNA:mRNA pairing occurs preferentially at the 3'-end of the seed match
 
research article

Analysis of the accessibility of CLIP bound sites reveals that nucleation of the miRNA:mRNA pairing occurs preferentially at the 3'-end of the seed match

Marin, Ray  
•
Voellmy, Franziska  
•
von Erlach, Thibaud  
Show more
2012
RNA

To find out whether the AGO-miRNA complex is more sensitive to the accessibility of a particular region inside the seed match, we analyze in detail the accessibility of a wide set of miRNA binding sites validated by PAR-CLIP and HITS-CLIP experiments. Our analysis reveals that nucleotides at the 3′-end of bound seed matches are significantly more accessible than nucleotides at the 5′-end as well as nucleotides at any positions in the unbound seed matches. We show that the accessibility of a single nucleotide at the 3′-end is more effective than the accessibility of several nucleotides at the 5′-end in discriminating between functional and nonfunctional binding sites. Analysis of mRNA and protein fold changes induced by miRNA overexpression demonstrates that genes with accessible nucleation regions at the 3′-end are down-regulated more strongly than genes whose accessible nucleation regions are located elsewhere within the seed match. We also observed an increase in the precision of the miRNA target prediction algorithm PACMIT when accessibility toward the 3′-end of the seed match was required. The pronounced sensitivity of the AGO–miRNA complex to the accessibility of the 3′-end of the seed match suggests that, in most cases, nucleation occurs in this region. We show that this conclusion is consistent with previous experimental studies.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

RNA2012.pdf

Access type

openaccess

Size

1.07 MB

Format

Adobe PDF

Checksum (MD5)

dc9a17018a916eba90b83fe9005ecf9c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés