In my thesis, transport measurements such as resistivity and, more importantly, thermopower S, were used to explore the phase diagram of bad metals. Bad metals are electronically correlated systems whose ground state lies close to a quantum phase transition. By tuning the control parameters, such as temperature (T ), magnetic field (B), hydrostatic pressure (p) or chemical substitution (x), we can induce phase transitions between the various electronic, magnetic and structural phases. Here, the thermopower is presented as a unique tool for probing quantum phase transition because it is a measure of the entropy of conducting electrons. The main part of the thesis is dedicated to the study of Fe-based superconductors (FeSC) discovered in 2008. Their parent compound has an antiferromagnetic (AF) ground state, where the itinerant electrons form a spin-density wave (SDW), a periodic modulation of spin density. This coincides or is preceded by a structural, tetragonal-to-orthorhombic transition. The nesting between the electron and hole Fermi surface is believed to be the driving mechanism for the SDW state. By changing the structural or chemical properties the AF ground state of FeSC is suppressed, giving way to superconductivity (SC). The remaining antiferromagnetic fluctuations above the transition can provide a glue for SC pairing. Here, the analysis of the thermopower S/T of BaFe1−xCoxAs2 (BFCA) in the x-T phase diagram shows the signatures of the spin fluctuation which have a dome-like dependence and follow the trend of superconducting Tc . The logarithmic increase of S/T upon decreasing T is ascribed to the proximity of the spin-density-wave quantum critical point. It can be understood as an increase of entropy due to the incommensurate AF spin fluctuations. We can ascribe the high values of thermopower in BFCA at intermediate- and room-temperatures to the influence of low-T quantum criticality. To probe the response of the electronic system in FeSC to structural changes, we performed measurements under pressure of the parent compound BaFe2As2 (BFA), the SC electron-doped BFCA, and hole-doped Ba1−xKxFe2As2 (BKFA). In the parent compound pressure suppresses the structural/SDW transition, similar to the effect of doping. For doped systems, in order to describe the behavior of thermopower in the high-T range (above 100K) we used a semi-metallic two-band model which was fitted to the data in order to extract the pressure dependence of the band parameters. In both doping cases the effect of pressure was similar, an increase of the band overlap and of the effective number of charge carriers. With this model we can explain the high-T , x and p dependence of thermopower in both electron- and hole-doped BFA. In a structurally simpler Fe-chalcogenide Fe1+yTe1−xSex compound, the excess of Fe has a Kondo-like influence on the charge carriers which dramatically changes the physics of the normal state. To probe the normal state, pressure, doping, magnetic Fe-excess concentration (y) and temperature were used as control parameters. At low-T a characteristic upturn of resistivity (ρmag ) is observed, followed by an increase of thermopower (Smag ), which we identify as the magnetic contribution caused by the spin-flip scattering events. Increasing the y resulted in an increase of ρmag , and a decrease of Smag , which is in agreement with the behavior of canonical Kondo-systems. Pressure suppresses the magnetic contribution to transport, thus increasing the itinerancy of the system. MnSi is another system in which the sensitivity of thermopower to entropy brings new information related to the complex magnetic structure. Pressure was used to drive the system from a helically ordered, canonical Fermi-liquid (FL) phase with T 2-resistivity to the intrinsically disordered, non-Fermi-liquid (NFL) phase above pc with T3/2-dependence. Our contour plot of S/T demonstrated how powerful the thermopower technique is, by reproducing the whole previously established T -p phase diagram. At the phase transition from the magnetically-ordered FL phase to the disordered NFL, the thermopower is dramatically enhanced. We bring useful information about the mysterious partial order (PO) phase inside the NFL phase, previously detected only by neutron scattering. The fluctuating helices scenario can describe the observed increase of entropy/thermopower in the PO phase. At ambient pressure, close to the helical transition of MnSi, a moderate magnetic field can stabilize the skyrmion lattice - the lattice of topological magnetic whirls, vortices. We observe a signature of the skyrmion lattice as a minute drop in thermopower. It is located exactly in the same region of the T − B phase diagram where an increase in magnetoresistance and Hall effect was reported previously. This feature originates from the additional scattering of conducting electrons on magnetic vortices, while the change in S is dominated by the decrease of entropy as the stable skyrmion lattice is formed. Overall, resistivity was used to confirm the established phase diagram, while thermopower, as an interesting and not sufficiently understood technique, was used to probe the sensitive changes of the charge carriers at the Fermi surface. We explored various phases showing how useful thermopower is to probe the entropy of electronic system on the verge of quantum phase transition.