Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Randomized versus Deterministic Implementations of Concurrent Data Structures
 
doctoral thesis

Randomized versus Deterministic Implementations of Concurrent Data Structures

Alistarh, Dan  
2012

One of the key trends in computing over the past two decades has been increased distribution, both at the processor level, where multi-core architectures are now the norm, and at the system level, where many key services are currently distributed overmultiple machines. Thus, understanding the power and limitations of computing in a concurrent, distributed setting is one of the major challenges in Computer Science. In this thesis, we analyze the complexity of implementing concurrent data structures in asynchronous shared memory systems. We focus on the complexity of a classic distributed coordination task called renaming, in which a set of processes need to pick distinct names from a small set of identifiers. We present the first tight bounds for the time complexity of this problem, both for deterministic and randomized implementations, solving a long-standing open problem in the field. For deterministic algorithms, we prove a tight linear lower bound; for randomized solutions, we provide logarithmic upper and lower bounds on time complexity. Together, these results show an exponential separation between deterministic and randomized renaming solutions. Importantly, the lower bounds extend to implementations of practical shared-memory data structures, such as queues, stacks, and counters. From a technical perspective, this thesis highlights new connections between the distributed renaming problem and other fundamental objects, such as sorting networks, mutual exclusion, and counters. In particular, we show that sorting networks can be used to obtain optimal randomized solutions to renaming, and that, in turn, the existence of these solutions implies a linear lower bound on the complexity of the problem. In sum, the results in this thesis suggest that deterministic implementations of shared-memory data structures do not scale well in terms of worst-case time complexity. On the positive side, we emphasize randomization as a natural alternative, which can circumvent the deterministic lower bounds with high probability. Thus, a promising direction for future work is to extend our randomized renaming techniques to obtain efficient implementations of concurrent data structures.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH5447.pdf

Access type

openaccess

Size

1.2 MB

Format

Adobe PDF

Checksum (MD5)

daf85db40e6bb2778c2b6a6346fc16a3

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés