Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Convex computation of the region of attraction of polynomial control systems
 
research article

Convex computation of the region of attraction of polynomial control systems

Henrion, Didier
•
Korda, Milan  
2014
IEEE Transactions on Automatic Control

We address the long-standing problem of computing the region of attraction (ROA) of a target set (typically a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving a convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ROA_examples.zip

Access type

openaccess

Size

1.27 MB

Format

ZIP

Checksum (MD5)

66d73a6ca1c0513ee67f47dab52d3890

Loading...
Thumbnail Image
Name

roa.pdf

Access type

openaccess

Size

2.44 MB

Format

Adobe PDF

Checksum (MD5)

92c577dd7de0982da108960e76061fb8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés