Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources

In CO2 cycles with high-temperature heat sources that are used in applications such as nuclear power, concentrated solar power, and combustion, partial condensation transcritical CO2 (T-CO2) cycles or recompression supercritical CO2 (S-CO2) cycles are considered to be promising cycles; this is because these cycles cause a reduction in the large internal irreversibility in the recuperator owing to the higher specific heat of the high-pressure side than that of the low-pressure side. However, if heat is available in the low-temperature range, the T-CO2 Rankine cycles (or fully-cooled S-CO2 cycles) will be more effective than the T-CO2 Brayton cycles (or less-cooled S-CO2 cycles) and even than the partial condensation T-CO2 cycles (or recompression S-CO2 cycles). This is because the compression work is reduced while achieving the same temperature rise by heat recovery through the recuperator before the high-temperature heater. The proposed T-CO2 Rankine cycles or fully-cooled S-CO2 cycles using both the low- and high-temperature heat sources can maximize the power output of the CO2 power cycle with the given high-temperature heat sources. Moreover, the proposed CO2 cycles combined with the low-temperature thermal energy storage offer the advantage of load leveling over other CO2 cycles, with the given high-temperature heat sources. (C) 2012 Elsevier Ltd. All rights reserved.

Published in:
Energy, 43, 402-415

 Record created 2012-08-03, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)