Piercing quasi-rectangles-On a problem of Danzer and Rogers

It is an old problem of Danzer and Rogers to decide whether it is possible to arrange 0(1/epsilon) points in the unit square so that every rectangle of area epsilon > 0 within the unit square contains at least one of them. We show that the answer to this question is in the negative if we slightly relax the notion of rectangles, as follows.


Publié dans:
Journal of Combinatorial Theory, Series A, 119, 7, 1391-1397
Année
2012
Publisher:
Elsevier
ISSN:
0097-3165
Mots-clefs:
Laboratoires:




 Notice créée le 2012-07-27, modifiée le 2018-12-03


Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)