Infoscience

Journal article

Spin Channels in Functionalized Graphene Nanoribbons

We characterize the transport of functionalized graphene nanoribbons using extensive first-principles calculations based on density functional theory (DFT) that encompass both monovalent and divalent ligands, hydrogenated defects, and vacancies. We find that the edge metallic states are preserved under a variety of chemical environments, while bulk conducting channels can be easily destroyed by either hydrogenation or Ion or electron beams, resulting In devices that can exhibit spin conductance polarization close to unity.

Fulltext

Related material