Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Stability of stationary wave maps from a curved background to a sphere
 
research article

Stability of stationary wave maps from a curved background to a sphere

Shahshahani, Sohrab Mirshams  
2016
Discrete and Continuous Dynamical Systems

We study time and space equivariant wave maps from $M \times \mathbb{R} \rightarrow S^2$, where $M$ is dieomorphic to a two dimensional sphere and admits an action of $SO(2)$ by isometries. We assume that metric on $M$ can be written as $dr^2+f^2(r)d\theta^2$ away from the two xed points of the action, where the curvature is positive, and prove that stationary (time equivariant) rotationally symmetric (of any rotation number) smooth wave maps exist and are stable in the energy topology. The main new ingredient in the construction, compared with the case where $M$ is isometric to the standard sphere (considered by Shatah and Tahvildar-Zadeh [34]), is the the use of triangle comparison theorems to obtain pointwise bounds on the fundamental solution on a curved background.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Stationary Maps.pdf

Access type

openaccess

Size

568.76 KB

Format

Adobe PDF

Checksum (MD5)

db1da470e3dbd2a06ae2c6ff1c4c3781

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés