Swirl Jets in Crossflow at Low Velocity Ratios

This investigation examines experimentally the behavior of swirled jets produced by axial flow fans blowing into a crossflow at low velocity ratios. The main difference with non-swirl cases is an asymmetry of the dominant kidney vortex and a slight distortion of the jet trace downstream of the injection hole. The effect of jet rotation at relatively low swirl numbers and similar velocity ratios is also investigated by a validated computational analysis tool. The numerical results are analyzed by means of various post-processing procedures, aiming to clarify, quantify and analyze the impact of swirl on the characteristics and the flow domain of a jet in crossflow. In general, swirl introduces an asymmetry in all examined quantities and prevents the penetration of the jet into the crossflow, causing the jet to remain closer to the wall surface. The rotation of the injected fluid results in an imparity of the two parts of the Counter Rotating Vortex Pair (CVP) which is no longer symmetric to the axial centerline plane. High swirl numbers result in the destruction of the CVP and the dominant kidney shape vortex is transformed into a comma shape vortex, rotating close to the wall.

Published in:
Journal of Mechanics Engineering and Automation, 2, 4, 256-266

Note: The status of this file is: EPFL only

 Record created 2012-05-30, last modified 2020-10-28

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)