Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Toward an in Vivo Neurochemical Profile: Quantification of 18 Metabolites in Short-Echo-Time 1H NMR Spectra of the Rat Brain
 
research article

Toward an in Vivo Neurochemical Profile: Quantification of 18 Metabolites in Short-Echo-Time 1H NMR Spectra of the Rat Brain

Pfeuffer, J.
•
Tkáč, I.
•
Provencher, S. W.
Show more
1999
Journal of Magnetic Resonance

Localized in vivo 1H NMR spectroscopy was performed with 2-ms echo time in the rat brain at 9.4 T. Frequency domain analysis with LCModel showed that the in vivo spectra can be explained by 18 metabolite model solution spectra and a highly structured background, which was attributed to resonances with fivefold shorter in vivo T1 than metabolites. The high spectral resolution (full width at half maximum approximately 0.025 ppm) and sensitivity (signal-to-noise ratio approximately 45 from a 63-μL volume, 512 scans) was used for the simultaneous measurement of the concentrations of metabolites previously difficult to quantify in 1H spectra. The strongly represented signals of N-acetylaspartate, glutamate, taurine, myo-inositol, creatine, phosphocreatine, glutamine, and lactate were quantified with Cramér-Rao lower bounds below 4%. Choline groups, phosphorylethanolamine, glucose, glutathione, γ-aminobutyric acid, N-acetylaspartylglutamate, and alanine were below 13%, whereas aspartate and scyllo-inositol were below 22%. Intra-assay variation was assessed from a time series of 3-min spectra, and the coefficient of variation was similar to the calculated Cramér-Rao lower bounds. Interassay variation was determined from 31 pooled spectra, and the coefficient of variation for total creatine was 7%. Tissue concentrations were found to be in very good agreement with neurochemical data from the literature. © 1999 Academic Press.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

pfeuffer_jmr99.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

202.78 KB

Format

Adobe PDF

Checksum (MD5)

34be9b8eb2f0a986a1e61f5349ac3a37

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés