Detecting natural abundance carbon signal of NAA metabolite within 12- cm3 localized volume of human brain using 1H-{13C} NMR spectroscopy
NMR spectroscopy has been applied extensively to study metabolism noninvasively in the human brain and other tissues. However, it usually suffers from poor signal-to-noise ratio due to low NMR sensitivity and low metabolite concentrations. In this study, the technique of proton-observe- carbon-edited (POCE) NMR spectroscopy combined with a single-shot localization sequence was used to detect the natural abundance carbon signal of the amino acid N-acetyl aspartate from a 12-cm3 localized volume in the occipital lobe of humans at 4 T. The results suggest that NMR spectroscopy is sensitive enough to detect signals from low concentration metabolites (<60 nmol/g) from small volumes in the human brain within several minutes of data acquisition. This reveals that in vivo NMR spectroscopy is a promising technique for detecting small metabolite changes and low traces of 13C isotopic labeling for dynamic metabolism studies aimed at investigating physiological and pathological questions.
weiNAAC13.PDF
Publisher's version
openaccess
451.95 KB
Adobe PDF
6838569c8e9c631c645f00d499725fd0