Long-lived states to sustain hyperpolarized magnetization
Major breakthroughs have recently been reported that can help overcome two inherent drawbacks of NMR: the lack of sensitivity and the limited memory of longitudinal magnetization. Dynamic nuclear polarization (DNP) couples nuclear spins to the large reservoir of electrons, thus making it possible to detect dilute endogenous substances in magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI). We have designed a method to preserve enhanced ("hyperpolarized") magnetization by conversion into long-lived states (LLS). It is shown that these enhanced long-lived states can be generated for proton spins, which afford sensitive detection. Even in complex molecules such as peptides, long-lived proton states can be sustained effectively over time intervals on the order of tens of seconds, thus allowing hyperpolarized substrates to reach target areas and affording access to slow metabolic pathways. The natural abundance carbon-13 polarization has been enhanced ex situ by almost four orders of magnitude in the dipeptide Ala-Gly. The sample was transferred by the dissolution process to a high-resolution magnet where the carbon-13 polarization was converted into a long-lived state associated with a pair of protons. In Ala-Gly, the lifetime TLLS associated with the two nonequivalent H glycine protons, sustained by suitable radio-frequency irradiation, was found to be seven times longer than their spin-lattice relaxation time constant (TLLS/T1 = 7). At desired intervals, small fractions of the populations of long-lived states were converted into observable magnetization. This opens the way to observing slow chemical reactions and slow transport phenomena such as diffusion by enhanced magnetic resonance.
WOS:000271429800013
2009
106
44
18469
18473
REVIEWED