Ethynyl Benziodoxolones for the Direct Alkynylation of Heterocycles: Structural Requirement, Improved Procedure for Pyrroles, and Insights into the Mechanism

This report describes a full study of the gold-catalyzed direct alkynylation of indoles, pyrroles, and thiophenes using alkynyl hypervalent iodine reagents, especially the study of the structural requirements of alkynyl benziodoxolones for an efficient acetylene transfer to heterocycles. An improved procedure for the alkynylation of pyrroles using pyridine as additive is also reported. Nineteen alkynyl benziodoxol(on)es were synthesized and evaluated in the direct alkynylation of indoles and/or thiophenes. Bulky silyl groups as acetylene substituents were optimal. Nevertheless, transfer of aromatic acetylenes to thiophene was achieved for the first time. An accelerating effect of a methyl substituent in both the 3- and 6-position of triisopropylsilylethynyl-1,2-benziodoxol-3(1H)-one (TIPS-EBX) on the reaction rate was observed. Competitive experiments between substrates of different nucleophilicity, deuterium labeling experiments, as well as the regioselectivity observed are all in agreement with electrophilic aromatic substitution. Gold(III) 2-pyridinecarboxylate dichloride was also an efficient catalyst for the reaction. Investigations indicated that gold(III) could be eventually reduced to gold(I) during the process. As a result of these investigations, a p activation or an oxidative mechanism are most probable for the alkynylation reaction.


Published in:
Chemistry-A European Journal, 18, 5655-5666
Year:
2012
Keywords:
Laboratories:




 Record created 2012-05-18, last modified 2018-12-03

n/a:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)