Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Bayesian detection of asynchronous EEG patterns
 
journal article

Bayesian detection of asynchronous EEG patterns

Bourdaud, Nicolas  
•
Chavarriaga, Ricardo  
•
Millán, José del R.  
2011
International Journal of Bioelectromagnetism

We proposed a Bayesian model for the detection of asynchronous EEG patterns. Based on a skew normal model of the pattern of interest in the time-domain and on the assumption that background activity can be modeled as colored noise, we estimate both the pattern of interest and the time onset in each trial from the data using a Monte Carlo Markov Chain algorithm. Initial tests on synthetic data showed that the methods estimated correctly the pattern and the time onsets in all trials.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ijbem_2011_v13_no2_106-107.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

295.01 KB

Format

Adobe PDF

Checksum (MD5)

9d477bc754d62690ce9c98f1de01288b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés