Video Quality for Face Detection, Recognition and Tracking

Many distributed multimedia applications rely on video analysis algorithms for automated video and image processing. Little is known, however, about the minimum video quality required to ensure an accurate performance of these algorithms. In an attempt to understand these requirements, we focus on a set of commonly used face analysis algorithms. Using standard datasets and live videos, we conducted experiments demonstrating that the algorithms show almost no decrease in accuracy until the input video is reduced to a certain critical quality, which amounts to significantly lower bitrate compared to the quality commonly acceptable for human vision. Since computer vision percepts video differently than human vision, existing video quality metrics, designed for human perception, cannot be used to reason about the effects of video quality reduction on accuracy of video analysis algorithms. We therefore investigate two alternate video quality metrics, blockiness and mutual information, and show how they can be used to estimate the critical video qualities for face analysis algorithms.

Published in:
ACM Transactions on Multimedia Computing, Communications and Applications, 7, 3

 Record created 2012-05-09, last modified 2018-03-17

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)