Wireless body sensor networks (WBSNs) are a rising technology that allows constant and unobtrusive monitoring of the vital signals of a patient. The configuration of a WBSN node proves to be critical in order to maximize its lifetime, while meeting the predefined performance during signal sensing, preprocessing, and wireless transmission to the base station. In this work, we propose a model-based optimization framework for WBSN nodes, which is centered on a detailed analytical characterization of the most energy-demanding components of this application domain. We also propose a multi-objective exploration algorithm to evaluate the node configurations and the corresponding performance tradeoffs. A case study is discussed to validate the proposed framework, proving that our model captures the behavior of real WBSNs and efficiently leads to the determination of the Pareto-optimal configurations.