Infoscience

Conference paper

Overview of the ITER EC H&CD; system and its capabilities

The Electron Cyclotron (EC) system for the ITER tokamak is designed to inject >= 20 MW RF power into the plasma for Heating and Current Drive (H&CD;) applications. The EC system consists of up to 26 gyrotrons (between 1 and 2 MW each), the associated power supplies, 24 transmission lines and 5 launchers. The EC system has a diverse range of applications including central heating and current drive, current profile tailoring and control of plasma magneto-hydrodynamic (MUD) instabilities such as the sawtooth and neoclassical tearing modes (NTMs). This diverse range of applications requires the launchers to be capable of depositing the EC power across nearly the entire plasma cross section. This is achieved by two types of antennas: an equatorial port launcher (capable of injecting up to 20 MW from the plasma axis to mid-radius) and four upper port launchers providing access from inside of mid radius to near the plasma edge. The equatorial launcher design is optimized for central heating, current drive and profile tailoring, while the upper launcher should provide a very focused and peaked current density profile to control the plasma instabilities.

Fulltext

Related material