Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Computational Model for the Stimulation of Rat Sciatic Nerve Using a Transverse Intrafascicular Multichannel Electrode
 
Loading...
Thumbnail Image
research article

A Computational Model for the Stimulation of Rat Sciatic Nerve Using a Transverse Intrafascicular Multichannel Electrode

Raspopovic, Stanisa  
•
Capogrosso, Marco  
•
Micera, Silvestro  
2011
Ieee Transactions On Neural Systems And Rehabilitation Engineering

Neuroprostheses based on electrical stimulation could potentially help disabled persons. They are based on neural interface that aim at creating an intimate contact with neural cells. The efficacy of neuroprostheses can be improved by increasing the selectivity of the neural interfaces used to stimulate specific subsets of cells. Selectivity is strongly influenced by interface design. Computer models can be useful for exploring the high dimensional space of design parameters with the aim to provide guidelines for the development of more efficient electrodes, with minimal animal use and optimization of manufacturing processes. The purpose of this study was to implement a realistic model of the performance of a transverse intrafascicular multichannel electrode (TIME) implanted into the rat sciatic nerve. A realistic finite element method (FEM) model was developed taking into account the anatomical and physiological features of the rat sciatic nerve. Electric potentials were calculated and interpolated voltages were applied to the model of a rat sciatic nerve axon, based on experimental biophysical data. Results indicate that high intra-fascicular and inter-fascicular selectivity values with low current levels can be achieved with TIMEs. The selectivity of TIMEs was also compared to an extraneural electrode, showing that higher selectivity with less current can be obtained. Using this model, the robustness of electrode performances for translational and rotational displacements were evaluated.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TNSRE.2011.2151878
Web of Science ID

WOS:000293754800001

Author(s)
Raspopovic, Stanisa  
•
Capogrosso, Marco  
•
Micera, Silvestro  
Date Issued

2011

Published in
Ieee Transactions On Neural Systems And Rehabilitation Engineering
Volume

19

Start page

333

End page

344

Subjects

Electrical neural stimulation

•

finite element method

•

transverse intrafascicular multichannel electrode (TIME) electrodes

•

rat axon model

•

rat sciatic nerve

•

selectivity

•

Epidural Electrical-Stimulation

•

Myelinated Nerve

•

Intraneural Stimulation

•

Fiber Stimulation

•

Spinal-Cord

•

Currents

•

Neuroprostheses

•

Sensitivity

•

Selectivity

•

Potentials

Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
TNE  
CNP  
Available on Infoscience
March 26, 2012
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/79033
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés