Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Input-dependent Regularization of Conditional Density Models
 
report

Input-dependent Regularization of Conditional Density Models

Seeger, Matthias  
2000

We emphasize the need for input-dependent regularization in the context of conditional density models (also: discriminative models) like Gaussian process predictors. This can be achieved by a simple modification of the standard Bayesian data generation model un- derlying these techniques. Specifically, we allow the latent target function to be a- priori dependent on the distribution of the input points. While the standard genera- tion model results in robust predictors, data with missing labels is ignored, which can be wasteful if relevant prior knowledge is avail- able. We show that discriminative mod- els like Fisher kernel discriminants and Co- Training classifiers can be regarded as (ap- proximate) Bayesian inference techniques un- der the modified generation model, and that the template Co-Training algorithm is related to a variant of the well-known Expectation- Maximization (EM) technique. We propose a template EM algorithm for the modified generation model which can be regarded as generalization of Co-Training.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

icml-paper.pdf

Access type

openaccess

Size

201.48 KB

Format

Adobe PDF

Checksum (MD5)

fa8c81bf6d09f901dadb21ee239848b2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés