Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Flavour effects on leptogenesis predictions
 
research article

Flavour effects on leptogenesis predictions

Blanchet, Steve  
•
Di Bari, Pasquale
2006
Journal of Cosmology and Astroparticle Physics

Flavor effects in leptogenesis reduce the region of the see-saw parameter space where the final predictions do not depend on the initial conditions, the strong wash-out regime. In this case we show that the lowest bounds holding on the lightest right-handed (RH) neutrino mass and on the reheating temperature for hierarchical heavy neutrinos, do not get relaxed compared to the usual ones in the one-flavor approximation, M_1 (T_reh) \gtrsim 3 (1.5) x 10^9 GeV. Flavor effects can however relax down to these minimal values the lower bounds holding for fixed large values of the decay parameter K_1. We discuss a relevant definite example showing that, when the known information on the neutrino mixing matrix is employed, the lower bounds for K_1 \gg 10, are relaxed by a factor 2-3 for light hierarchical neutrinos, without any dependence on \theta_13 and on possible phases. On the other hand, going beyond the limit of light hierarchical neutrinos and taking into account Majorana phases, the lower bounds can be relaxed by one order of magnitude. Therefore, Majorana phases can play an important role in leptogenesis when flavor effects are included.

  • Details
  • Metrics
Type
research article
DOI
10.1088/1475-7516/2007/03/018
ArXiv ID

hep-ph/0607330

Author(s)
Blanchet, Steve  
Di Bari, Pasquale
Date Issued

2006

Published in
Journal of Cosmology and Astroparticle Physics
Volume

2007

Issue

03

Start page

018

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
ITP  
Available on Infoscience
February 12, 2012
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/77662
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés