Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Accelerating Range Queries For Brain Simulations
 
conference paper

Accelerating Range Queries For Brain Simulations

Tauheed, Farhan  
•
Biveinis, Laurynas
•
Heinis, Thomas  
Show more
2012
2012 IEEE 28th International Conference on Data Engineering
28th International Conference on Data Engineering (ICDE '12)

Neuroscientists increasingly use computational tools to build and simulate models of the brain. The amounts of data involved in these simulations are immense and the importance of their efficient management is primordial. One particular problem in analyzing this data is the scalable execution of range queries on spatial models of the brain. Known indexing approaches do not perform well, even on today's small models containing only few million densely packed spatial elements. The problem of current approaches is that with the increasing level of detail in the models, the overlap in the tree structure also increases, ultimately slowing down query execution. The neuroscientists' need to work with bigger and more importantly, with increasingly detailed (denser) models, motivates us to develop a new indexing approach. To this end we developed FLAT, a scalable indexing approach for dense data sets. We based the development of FLAT on the key observation that current approaches suffer from overlap in case of dense data sets. We hence designed FLAT as an approach with two phases, each independent of density. Our experimental results confirm that FLAT achieves independence from data set size as well as density and also outperforms R-Tree variants in terms of I/O overhead from a factor of two up to eight.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

flat.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

1.03 MB

Format

Adobe PDF

Checksum (MD5)

35c6f8f13d19ca3837ff5556e6a8c0c7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés