Files

Abstract

Processing fl exibility and good mechanical properties are the two major reasons for SU-8 extensive applicability in the micro-fabrication of devices. In order to expand its usability down to the nanoscale, conductivity of ultra-thin SU-8 layers as well as its patterning by AFM are explored. By performing local electrical measurements outstanding insulating properties and a dielectric strength 100 times larger than that of SiO 2 are shown. It is also demonstrated that the resist can be nano-patterned using AFM, obtaining minimum dimensions below 40nm and that it can be combined with parallel lithographic methods like UV-lithography. The concurrence of excellent insulating properties and nanometer-scale patternability enables a valuable new approach for the fabrication of nanodevices. As a proof of principle, nano-electrode arrays for electrochemical measurements which show radial diffusion and no overlap between different diffusion layers are fabricated. This indicates the potential of the developed technique for the nanofabrication of devices.

Details

Actions