Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Growth modification of seeded calcite using carboxylic acids: Atomistic simulations
 
research article

Growth modification of seeded calcite using carboxylic acids: Atomistic simulations

Aschauer, Ulrich  
•
Spagnoli, Dino
•
Bowen, Paul  
Show more
2010
Journal of Colloid and Interface Science

Molecular dynamics simulations were used to investigate possible explanations for experimentally observed differences in the growth modification of calcite particles by two organic additives, polyacrylic acid (PAA) and polyaspartic acid (p-ASP). The more rigid backbone of p-ASP was found to inhibit the formation of stable complexes with counter-ions in solution, resulting in a higher availability of p-ASP compared to PAA for surface adsorption. Furthermore the presence of nitrogen on the p-ASP backbone yields favorable electrostatic interactions with the surface, resulting in negative adsorption energies, in an upright (brush conformation). This leads to a more rapid binding and longer residence times at calcite surfaces compared to PAA, which adsorbed in a flat (pancake) configuration with positive adsorption energies. The PAA adsorption occurring despite this positive energy difference can be attributed to the disruption of the ordered water layer seen in the simulations and hence a significant entropic contribution to the adsorption free energy. These findings help explain the stronger inhibiting effect on calcite growth observed by p-ASP compared to PAA and can be used as guidelines in the design of additives leading to even more marked growth modifying effects.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

139.Aschauer_JCollInterfSci_346_2010.pdf

Access type

openaccess

Size

519.97 KB

Format

Adobe PDF

Checksum (MD5)

8ab8e99d490521b7c98e797a1928a788

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés