Pavlovian conditioning is one of the major neurobiological mechanisms of placebo effects, potentially influencing the course of specific diseases and the response to a pharmacological therapy, such as immunosuppression. In our study with behaviorally conditioned rats, a relevant taste (0.2% saccharin) preceded the application of the immunosuppressive drug cyclosporin A (CsA), a specific calcineurin (CaN) inhibitor. Our results demonstrate that through pavlovian conditioning the particular pharmacological properties of CsA can be transferred to a neutral taste, i.e., CaN activity was inhibited in splenocytes from conditioned rats after reexposure to the gustatory stimulus. Concomitant immune consequences were observed on ex vivo mitogenic challenge (anti-CD3). Particularly, Th1-cytokine, but not Th2-cytokine, production and cell proliferation were impeded. Appropriate pharmacological and behavioral controls certify that all these changes in T-lymphocyte reactivity are attributable to mere taste reexposure. Furthermore, the underlying sympathetic-lymphocyte interaction was revealed modeling the conditioned response in vitro. CaN activity in CD4(+) T lymphocytes is reduced by beta-adrenergic stimulation (terbutaline), with these effects antagonized by the beta-adrenoreceptor antagonist nadolol. In summary, CaN was identified as the intracellular target for inducing conditioned immunosuppression by CsA, contributing to our understanding of the intracellular mechanisms behind "learned placebo effects."