Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Semantic Activity Classification Using Locomotive Signatures from Mobile Phones
 
report

Semantic Activity Classification Using Locomotive Signatures from Mobile Phones

Yan, Zhixian  
•
Chakraborty, Dipanjan
•
Misra, Archan
Show more
2012

We explore the use of mobile phone-generated sensor feeds to determine the high-level (i.e., at the semantic level), indoor, lifestyle activities of individuals, such as cooking & dining at home and working & having lunch at the work- place. We propose and evaluate a 2-Tier activity extraction framework (called SAMMPLE1) where features of the low-level accelerometer data are first used to identify individual locomotive micro-activities (e.g., sitting or standing), and the micro-activity sequence is subsequently used to identify the discriminatory characteristics of individual semantic activities. Using 152 days of real-life behavioral traces from users, our approach achieves an average accuracy of 77.14%, an improvement of 16.37% from the traditional 1-Tier approach, which directly uses statistical features of the accelerometer stream, towards such activity classification tasks.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2012_semActi.pdf

Access type

openaccess

Size

873.49 KB

Format

Adobe PDF

Checksum (MD5)

d854267fc709d3cb910d2dd3feafaf25

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés