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Individual behavioral performance during learning is known to be affected by modulatory factors, such as stress and motivation,

and by genetic predispositions that influence sensitivity to these factors. Despite numerous studies, no integrative framework is

available that could predict how a given animal would perform a certain learning task in a realistic situation. We found that a

simple reinforcement learning model can predict mouse behavior in a hole-box conditioning task if model metaparameters are

dynamically controlled on the basis of the mouse’s genotype and phenotype, stress conditions, recent performance feedback and

pharmacological manipulations of adrenergic alpha-2 receptors. We find that stress and motivation affect behavioral performance

by altering the exploration-exploitation balance in a genotype-dependent manner. Our results also provide computational insights

into how an inverted U–shape relation between stress/arousal/norepinephrine levels and behavioral performance could be

explained through changes in task performance accuracy and future reward discounting.

Animal behavior is guided by rewards that can be received in different
situations and by modulatory factors such as stress and motivation.
Acute stress can have positive or negative effects on learning and
memory that depend on stressor properties (timing, duration and
relation with the task) and on the predispositions of stressed indivi-
duals1–3. These effects are thought to be mediated through the
modulation of synaptic plasticity by stress hormones and neuromo-
dulators, such as glucocorticoids and norepinephrine4–7. However,
their role in high-level processes such as learning, action selection
and future reward discounting is not well understood. In addition to
stress, genotype8, affective traits9, motivation10 and recent performance
feedback11 also influence individual performance, but it may be
difficult and inefficient to explicitly model each factor to accurately
predict animal behavior.

A number of models have related neuromodulatory systems to
cognitive processes and to statistical quantities characterizing the
environment12,13. Although such models provide insights into poten-
tial mechanisms, alone they are often unable to accurately predict
animal behavior in a realistic situation as a result of the diversity of the
modulatory factors affecting it. Here, we propose a method that can, in
principle, quantify the influence of arbitrary modulatory factors on
behavior as control parameters of a general behavioral model and that
is exemplified here for the case of stress and genetic strain in mice.

In modeling reward-based behavioral learning, approaches based on
the theory of reinforcement learning14 have been the most successful.
They have been applied to explain experimental data in animal
conditioning10, human decision-making15 and addiction16. However,
the modulatory role of stress and affective traits has not yet been

considered. In reinforcement learning, modeled animals occupy dif-
ferent states corresponding to their spatial location or presence of
relevant stimuli. From each state they select actions (for example,
making a physical movement) on the basis of expected values of future
rewards that could be acquired by taking these actions (Q values). The
Q values are learned by comparing observed rewards with predicted
ones and, in case of mismatch, updating the latter14. Such reward
prediction errors have been related to the activity of dopaminergic
neurons in the ventral tegmental area and the substantia nigra17.
Dopamine is known to modulate synaptic plasticity in striatum18,
where state and action values are presumably stored19.

Learning and action selection in reinforcement-learning models
depend directly on model parameters (that is, the present Q values),
whose update and use are controlled by so-called metaparameters such
as the learning rate, the exploration-exploitation balance and the future
reward discounting. Most behavioral modeling studies have considered
the metaparameters values to be constant. It has also been proposed that
they are related to specific neuromodulators, such as norepinephrine,
serotonin and acetylcholine20, and to neural activity in amygdala,
striatum and anterior cingulate21, brain areas with prominent hetero-
synaptic plasticity22. Stress, motivation and other modulatory factors act
through the same brain systems as mentioned above2,23, suggesting that,
in reinforcement learning, their effects could correspond to changes in
metaparameter values. In contrast with earlier studies that focused on a
single metaparameter (for example, the learning rate24,25 or the future
reward discounting26), which they related to task uncertainty24, genetic
polymorphisms25 or serotonin levels26, we considered all three
metaparameters and a wide range of modulatory factors in parallel.
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We analyzed mouse conditioning experiments using a reinforce-
ment-learning model. Our aim was to understand how stress, indivi-
dual differences (‘calm’ C57BL/6 versus ‘anxious-like’ DBA/2 mouse
strains8), motivation (food deprivation level) and other factors control
mouse learning and memory, exploration-exploitation balance and
future reward discounting. Furthermore, to study the link between
reinforcement-learning metaparameters and neuromodulation, we
pharmacologically manipulated the norepinephrinergic system, which
is important in stress response2 and is thought to be related to task
performance accuracy27. We found that our model, whose metapara-
meters were controlled on the basis of information about modulatory
factors, could predict mouse behavior in a simple conditioning task.
The observed dynamics of model metaparameters provided insights
into how mice adjust their performance throughout the course of a
learning experience and how they respond to stressors, motivational
demands and norepinephrinergic manipulations.

RESULTS

We studied mouse behavior using a simple conditioning task, the hole
box (Fig. 1a), in which mice had to learn to make a nose poke into the
hole on the onset of light and to avoid making nose pokes under no
light. Correct responses were rewarded with a food pellet, whereas
incorrect ones were not. Mice performed the task for 8 consecutive days
and, after a 26-d break, were given the same task for another 5 d
(Fig. 1b). Each 500-s-long daily session consisted of trials separated by
intertrial intervals (ITIs) of variable duration, averaging 15 s. During
the 8 d of training, selected groups of mice were exposed to stress before
each daily session. On training days 3, 6 and 8, different groups of mice
were treated with adrenergic alpha-2 receptor drugs clonidine and
yohimbine, which affect brain norepinephrine levels28. During the 5 d
of recall, we asked whether mouse performance was most influenced by
current stress or by memories of stress experienced during training.

Modulatory factors influence task performance of the mice

We first characterized mouse performance in the hole-box task using
seven different performance measures (listed in Supplementary
Fig. 1), calculated for each daily session (over its duration of 500 s).
They indicate how quickly mice learned to respond, how accurately
they associated responses with light and how well they coped with
anxiety to make sufficiently long nose pokes (to pick up the delivered
food pellets). Thus, different performance measures reflected different
aspects of behavior and thus showed different dynamics with learning
(Fig. 1c–h). For both strains of mice, the number of trials (Fig. 1c)
increased and the mean response times (Supplementary Fig. 2)
decreased with training, indicating that mice had already learned to
respond faster to light and thus obtain more food pellets by the first
days of training. However, increases in the number of ITI pokes during
the training period (Supplementary Fig. 2) implied that the mice also
increased the number of incorrect responses during the early phase of
learning. The dynamics of time preference (Fig. 1d) and duration
preference (Supplementary Fig. 2) suggested that most mice started to
preferentially respond to light only during the recall phase. Such
relatively slow learning might be a result of uneaten pellets, left during
earlier trials and picked up during subsequent ITI pokes. This aspect
was explicitly included in our computational model and became useful
for revealing differences between experimental groups.

We observed the differences between the C57BL/6 and DBA/2 mouse
strains in mean nose-poke durations (Fig. 1e) and food pellets left
uneaten after each session (Supplementary Fig. 2); DBA/2 mice made
shorter nose pokes and, as a result, left more pellets. These differences
might be related to the different anxiety levels of the two strains
(Supplementary Fig. 3). For C57BL/6 mice, stress exposure before
each training session led to reduced mean response times (Fig. 1f) and
increased numbers of ITI pokes (Fig. 1g), whereas numbers of trials
were not affected during training (Fig. 1h).
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Figure 1 Experiment and behavioral results.

(a) Hole-box setup: a mouse can move in a

rectangular box. In one of the walls there is a hole

in which the mouse can poke its nose and in

which food is delivered if a nose poke occurs after

the light in the hole has been switched on.

(b) Experimental protocol. Following a 2-d

habituation, mice were trained for 8 d; after a
26-d break they were retrained for 5 more days.

Each daily session consisted of a 500-s sequence

of trials and ITIs. The short vertical arrows indicate

the days of pharmacological manipulations.

(c–h) Dynamics of behavioral performance

measures. (c) The number of trials performed

during a session of 500 s increased during

training (R ¼ 0.39, P o 0.001). (d) Time

preference. Mice responded to light increasingly

faster, compared with the average time interval

between nose pokes, during the second half of

training and during recall (R ¼ 0.38, P o 0.001).

(e) Mean nose poke durations were higher for

C57BL/6 mice than for DBA/2 mice (F1,804 ¼
73.9, P o 0.001). (f) C57BL/6 mice, stressed

during training, responded faster than the

nonstressed mice (F1,238 ¼ 17.4, P o 0.001).

(g) Stressed C57BL/6 mice also made more ITI

pokes during training than those that were not
exposed to stress (F1,238 ¼ 16.9, P o 0.001).

(h) The number of trials was not significantly

different during training between stressed and

nonstressed C57BL/6 groups (F1,238 ¼ 2.61,

P ¼ 0.11). Error bars denote s.e.m.
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The above analyses indicate that, although conventional behavioral
measures provide information about dynamics of learning and differ-
ences between experimental groups, this information is often hard to
interpret, as each measure describes an unknown mixture of cognitive
processes involved in learning and memory. Sometimes performing a
principal component analysis (PCA) may reduce the behavioral mea-
sures to a few main components that could be easily interpreted29.
In our case, however, PCA was not very informative (Supplementary
Fig. 1). As an alternative to conventional behavioral analyses, we
reasoned that a reinforcement-learning model could be sufficiently
flexible to fit a wide range of behavioral effects and, in contrast with the
performance measures, reinforcement-learning metaparameters could
be easily interpreted in cognitive terms.

A reinforcement-learning model can fit individual behavior

We formalized mouse behavior using a simple model (Fig. 2a) in which
states corresponded to the light condition (on or off) and to the mouse’s
position (outside referring to in the box and nose poke referring to in
the nose-poke hole), whereas actions represented movements in the
box as well as making nose pokes. The values for different actions were
updated using the temporal difference error (equation 2 in Online
Methods), with the learning rate a determining the speed of their update
and the future reward discount factor g controlling the balance between
immediate and delayed rewards. Actions were selected on the basis
of learned Q values and the exploitation-exploration factor b, which
determined the extent to which decisions were biased toward actions
with higher values. To simulate forgetting during the 26-d break, we
adjusted the Q values on the first recall day on the basis of a memory
decay factor, e. Unlike conventional performance measures, such
metaparameters could be interpreted in cognitive terms: a relating
to acquisition intensity, b to immediate performance accuracy, g to
impulsivity and e to long-term memory of reward predictions.

We observed that the choice of metaparameter values strongly
influenced model performance (Fig. 2b,c and Supplementary Fig. 4).
The relationship between metaparameters and performance measures
was typically nonlinear, but smooth, implying that the estimation of
metaparameters from observed data was unlikely to get stuck in local
optima. Moreover, fixed metaparameter values often yielded perfor-
mance measure dynamics that were incompatible with those observed
in mouse data, suggesting that metaparameter values should be
dynamically adapted with learning.

To evaluate how well mouse behavior in the hole box could be
explained by our model, we estimated a set of metaparameters for each
day and each mouse (or a subgroup of 2–4 mice in each experimental
group) with which the model could best fit mouse behavior (Fig. 3 and
Supplementary Fig. 5; for the dynamics of goodness-of-fit across days,

see Supplementary Fig. 6). Of the individually estimated metapara-
meter sets (Fig. 3a), 95% passed the w2 test of goodness-of-fit (satisfy-
ing P(windiv

2, n) 4 0.01, mean windiv
2 ¼ 4.4), meaning that our

reinforcement-learning model was sufficiently flexible to reproduce
mouse behavioral dynamics. The estimations for the subgroups of mice
were also good (mean wpairs

2 ¼ 5.5, wtriplets
2 ¼ 6.8 and wgroups

2 ¼ 7.7,
with 82–93% of estimated sets passing the w2 test). The s.d. among the
five best metaparameter sets (from different optimization runs for
a given day and mouse or subgroup) indicated that estimated
exploration-exploitation and reward discount factors were more
reliable than learning rates (sb ¼ 4.6%, sg ¼ 5.2% and sa ¼ 9.5% of
the range, respectively).

Strain, stress and norepinephrine affect metaparameters

The estimated reinforcement-learning metaparameters showed a
dependence on time, genetic strain, stress and norepinephrine manip-
ulation groups and were consistent across different subgroup
divisions (Supplementary Table 1). g and b showed progressive
increase (Fig. 4a–c), meaning that, during the course of learning, the
importance of delayed rewards and the accurate use of knowledge for
selecting actions increased. a decreased with training for C57BL/6 mice
(Fig. 4d), indicating that the mice learned most intensively during the
early days of the experiment.
a was slightly smaller for the stressed mice of both strains (Supple-

mentary Fig. 7), suggesting that extrinsic stress could impair
the acquisition process. g was much lower for DBA/2 than for
C57BL/6 mice, in particular for the stressed DBA/2 group (Fig. 4a),
indicating that the anxious-like DBA/2 mice, especially under stress, are
more impulsive than the calm C57BL/6 mice. Stress during training
increased b for C57BL/6 mice (Fig. 4b), but not for DBA/2 mice
(Supplementary Fig. 7). However, during recall the memories of
training stress had the opposite effect: the previously stressed
C57BL/6 mice now had lower exploitation factors (Fig. 4b). In
addition, b values were higher for mice that were stressed during recall
(Fig. 4c). This indicates that immediate stress and memories of
previous stress act oppositely on the performance accuracy of
C57BL/6 mice.

The results of the norepinephrine manipulations revealed the
relationship of norepinephrine to several reinforcement-learning meta-
parameters and its interactions with genetic strain and stress. For
DBA/2 mice, pharmacologically decreasing norepinephrine levels led to
lower b, whereas increasing them had little effect (Fig. 4e). For both
strains of mice (except stressed DBA/2), norepinephrine had a negative
relation with g; injections that increased norepinephrine levels reduced
g values, whereas those decreasing norepinephrine levels led to elevated
g values (Fig. 4f and Supplementary Fig. 7). This suggests that larger
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Figure 2 The hole-box model and its simulations.

(a) State-action chart of the model. Rectangles are

states and arrows are actions. p(r) denotes the

probability of receiving a reward and f indicates

whether a food pellet is available during an ITI

nose poke (f ¼ 1) or not (f ¼ 0). Rewards could

be acquired with ITI pokes if the food pellets

delivered in the previous trials were not eaten.
The thick arrow denotes a probabilistic transition

between ITI and trial (with 1/30 probability).

(b,c) Effects of reinforcement-learning

metaparameter values on model performance

over the course of training and recall. (b) The

influence of b on mean nose-poke durations

(a ¼ 0.4, g ¼ 0.6). (c) The effect of g on the

number of ITI pokes (a ¼ 0.4, b ¼ 8).
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amounts of norepinephrine generally lead to higher impulsivity,
consistent with previous animal and human studies30.

Finally, e did not show any substantial differences between strain,
stress or pharmacological treatment groups. This does not exclude the
possibility that our different experimental conditions affect long-term
memory of learned reward values, but suggests that their effects on
immediate performance accuracy and future reward discounting are
more pronounced.

Modulatory factor–driven model can predict mouse behavior

In the previous sections, we examined how the estimated metapara-
meters differed between experimental groups. For predicting the
behavior of a given mouse on a given day, information about motiva-
tion, anxiety and the previous performance of that mouse was also
important. For this purpose, we constructed a multilinear regression
with the mouse’s strain, affective phenotype (see Supplementary
Methods for details on phenotype characterization), stress and
its expectation, motivation, pharmacological manipulations, experi-
mental day and previous task performance as independent variables
and estimated reinforcement-learning metaparameters as dependent
ones. We found that, for individually estimated metaparameter sets,
R2

indiv¼ 0.15 of the variance could be explained by known factors. For
metaparameter sets, estimated from subgroup averages, this number
increased to R2

triplets ¼ 0.22, indicating that intra-group variability
accounted for a substantial part of unexplained variance. The partial
results for each metaparameter (R2

indiv(a)¼ 0.02, R2
indiv(b)¼ 0.21 and

R2
indiv(g)¼ 0.21) indicated that predictions of a were the least accurate,

whereas predictions of b and g were much more accurate.
The main limitation of the multilinear regression was that it could

not account for nonlinear interactions between modulatory factors.
Therefore, we also predicted metaparameters using an artificial neural
network (ANN) with different modulatory factors as inputs (Fig. 3b).
For individually estimated metaparameters, 18.2% of variance could be
explained (mean square error of the individually estimated metapara-
meters, MSEindiv¼ 0.818), whereas the explained variance increased to
nearly 30% (MSEtriplets ¼ 0.706) for subgroup-based metaparameters.
The resulting group averages fit the daily estimated values quite well
(Fig. 3c and Supplementary Fig. 5). Nearly all of the effects observed
from the comparisons of estimated metaparameters between experi-
mental groups and partial multilinear regressions were also predicted
by the ANN. This suggests that our metaparameter prediction method
preserves useful information, such as how metaparameters change with
learning and how they differ between experimental groups, and
eliminates arbitrary variation, which cannot be explained by any
input factor. To ensure that our ANN does not over-fit the training
data, we trained it using random subsets consisting of 80% of the data
and tested it on the remaining 20%. The results (Fig. 3d) indicated that
there was virtually no over-fitting, and our model could therefore
produce good predictions given new (unseen) data.

The final test of our model was to simulate the behavior of individual
mice with the SARSA algorithm14 (equation 6 in Online Methods)
using the outputs of the trained ANN as metaparameters, instead of the
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‘averaged’ method used for metaparameter estimation. We found that a
reasonably good fit between the model and mouse performance was
preserved (Fig. 3a and Supplementary Fig. 5); 82% of metaparameter
sets passed the w2 square test of goodness-of-fit (mean w2 ¼ 8.8). This
indicates that our reinforcement-learning model, combined with
metaparameter prediction by the ANN, can predict the performance
of most mice using only previously available information about
the mouse, its experimental condition and recent performance in
the experiment.

Graded modulatory factors correlate with metaparameters

Individual mice in each experimental group can differ in anxiety,
novelty reactivity and motivation. We studied how such graded
modulatory factors influence reinforcement-learning metapara-
meters and how they interact with strain and stress groups. Multi-
linear regressions revealed correlations between modulatory factors
and metaparameters b and g, some of which occurred across all

experimental groups and others that were dependent on genetic
strain and/or stress condition (Supplementary Table 2).

As in the group-based analysis, norepinephrine changes correlated
positively with b for DBA/2 mice and negatively with g for C57BL/6
mice (Fig. 5a). Furthermore, the effects of norepinephrine were
differentially pronounced depending on the anxiety trait (Fig. 5b).
We also observed that the novel object–exploration trait correlated with
b for DBA/2 mice: positively under stress and negatively under no stress
(Fig. 5c). This suggests that stress affects the balance of exploration and
exploitation more strongly for mice with high novelty seeking.

Although food deprivation was controlled in the experiment, small
arbitrary variation was unavoidable; during the experiment mice
weighed 87.7 ± 1.3% (mean ± s.d.) of their initial weight. As a result,
we could study the effects of food deprivation (as indexed by body
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Figure 5 Multilinear regression analyses and simulations of the trained ANN

reveal interactions between modulatory factors and their effects on model

metaparameters. (a) Norepinephrine manipulations correlated negatively with

g for C57BL/6 mice and positively with b for DBA/2 mice. (b) More anxious

mice of both strains had lower g and higher b than less anxious mice.

Increasing norepinephrine (NE+) had a stronger effect on g for less anxious

C57BL/6 mice, whereas decreasing norepinephrine (NE–) had a stronger

effect on b for more anxious DBA/2 mice. (c) The novelty reactivity trait

correlated with b for DBA/2 mice in a stress-dependent manner; mice that

explored the object in the center of the open field more intensively had lower

b values under no stress and higher b values under stress. (d) For the

nonstressed C57BL/6 mice and the stressed DBA/2 mice, food deprivation
(motivation) correlated positively with b, whereas there was no correlation for

the remaining two groups of mice. For the nonstressed C57BL/6 mice,

motivation also correlated positively with g. (e) Stress expectation correlated

negatively with b for the nonstressed C57BL/6 mice and positively with g for

the stressed mice of both strains. (f) ANN simulations indicated the relative

importance of stress expectation and immediate stress in controlling b. Error

bars in a and c–e denote 95% confidence intervals.

Figure 4 Genetic strain, stress and norepinephrine

manipulations influence daily estimated

metaparameters. (a) g increased with training

(R ¼ 0.49, P o 0.001) and was higher for

C57BL/6 mice than for DBA/2 mice (F1,6184 ¼
1370, P o 0.001) and lower for the stressed than

for the nonstressed DBA/2 mice (F1,1904 ¼ 58.6,

P o 0.001). (b) b increased during training and
recall (R ¼ 0.26, P o 0.001). C57BL/6 mice,

stressed during training, had higher b values than

the nonstressed C57BL/6 mice (F1,1874 ¼ 62.0,

P o 0.001). However, previously stressed C57BL/6

mice had lower b values during recall than

previously nonstressed mice (F1,1190 ¼ 100.1,

P o 0.001). (c) C57BL/6 mice, stressed during

recall, had higher b than the nonstressed mice

(F1,472 ¼ 25.9, P o 0.001). (d) The a values of

C57BL/6, but not of DBA/2, mice decreased with

training (R ¼ –0.33, P o 0.001). (e) Pharma-

cologically reducing the amount of norepinephrine

(NE–) led to lower b values for DBA/2 mice (F1,534

¼ 237.0, P o 0.001). (f) For all mice, except the

stressed DBA/2 mice, reducing norepinephrine

levels led to higher g (F1,804 ¼ 48.3, P o 0.001).

All plots correspond to the case of the five best

metaparameter sets, estimated from subgroups

containing pairs of mice. Error bars denote s.e.m.
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weight loss and related to motivation) on reinforcement-learning
metaparameters. We observed that generally higher deprivation led
to higher values of both g and b (Fig. 5d). However, its effect differed
between strain and stress groups. For nonstressed C57BL/6 mice,
motivation substantially increased b, whereas the effect was smaller
for mice under stress. For DBA/2 mice, it was the opposite; stress made
their b values more sensitive to motivation. These findings indicate
that, although C57BL/6 mice respond to extrinsic stress and increased
motivation in an additive manner, the motivation of DBA/2 mice is an
indicator of how they should respond to stress; the hungriest mice
improved their performance accuracy, whereas less hungry mice
engaged in more exploration.

We also studied how sensitively mice respond to immediate stress
and to the expectation of previous stress. For nonstressed C57BL/6
mice, stress expectation correlated negatively with b (Fig. 5e). However,
ANN simulations (Fig. 5f) revealed that the effect of immediate stress
was relatively stronger for C57BL/6 mice. g correlated positively with
stress expectation for the stressed mice of both strains (Fig. 5e),
indicating that mice who previously experienced stress would behave
less impulsively when they experience it again.

Analyzing ANN simulations and comparing regression slopes for
different modulatory factors could reveal their relative importance in
controlling certain metaparameters. For example, prior rewards and
misses, which are respectively the positive and the negative feedback to
the mouse about how well it has been performing, both substantially
increased b (Supplementary Fig. 8). However, g was predominantly
influenced by rewards and much less by misses.

DISCUSSION

In this study, we found that a simple reinforcement-learning model
with metaparameters that are controlled by various modulatory factors
could predict mouse behavior in the hole-box task. The predicted
model metaparameters showed a variety of relations with stress, genetic
strain, motivation and other factors, allowing us to make specific
inferences about their role in different cognitive processes. Moreover,
the results of pharmacological manipulations provided supporting
evidence that reinforcement-learning metaparameters are indeed
related to norepinephrine and brought insights into how the norepine-
phrinergic system affects behavioral performance.

The increase of b and the decrease of a with learning are consistent
with how the metaparameters of artificial agents should presumably be
controlled to achieve optimal performance20. One should learn more
rapidly in the beginning when little information is available and
more slowly later, to preserve the acquired knowledge. Similarly, a
strategy involving exploration during early learning and switching
to exploitation once a sufficient amount of knowledge has been
acquired seems to be the best. The increase of g with learning may be
a result of several reasons. Initially, low g values could appear because
hungry mice, exposed to a new environment, are anxious about
their future (for example, whether they could find food to survive),
and receiving immediate rewards therefore becomes of vital impor-
tance for them. The later increase of reward discount factors may occur
because high g values are necessary for making sufficiently long
trial responses and avoiding ITI pokes, thereby maximizing the
acquired rewards (see Supplementary Discussion for mathe-
matical justification).

Computational explanation of the inverted U–shape relation

Extrinsic stress slightly decreases the learning rate in the subsequent
task, which is consistent with scarce evidence in the literature suggest-
ing that it has impairing effects on learning3. More importantly, stress

leads to increased exploitation of the current knowledge for C57BL/6
mice and to increased impulsivity for DBA/2 mice. The anxiety trait has
similar effects: more anxious mice have higher exploitation factors and
lower future reward discount factors. Motivation and stress act addi-
tively in increasing exploitation factors for C57BL/6 mice, whereas the
interaction between them is more complex in DBA/2 mice. Finally,
stress expectation and immediate stress affect the metaparameters in
opposite ways.

The alterations of norepinephrine levels resembled the effects of
stress; increasing norepinephrine levels led to lower reward discount
factors, whereas decreasing norepinephrine levels (for DBA/2 mice)
led to lower exploitation factors. As anxious-like DBA/2 mice have
higher brain norepinephrine levels than calm C57BL/6 mice31,32,
our results imply that performance accuracy is decreased only in the
case of norepinephrine reduction for mice with usually high nor-
epinephrine levels. Our observations of the effects of norepinephrine
and stress are consistent with the inverted U–shape relation theory12,
according to which increasing arousal/stress/norepinephrine up to
moderate levels facilitates behavioral performance accuracy. The same
theory suggests that attentional switches become frequent at very high
norepinephrine levels, decreasing concentration ability and impairing
focused performance. Our results provide a computational explanation
for this phenomenon (Supplementary Fig. 9). In our experiment,
pharmacologically increasing norepinephrine levels did not lead to
lower b values for any experimental group. Instead, it reduced g,
impairing mice’s ability to take future rewards into account during
learning. Combined with high exploitation factors, this would lead
to impulsive pursuit of choices that are associated with short-term
rewards, which is similar to behavioral observations of animals with
very high norepinephrine levels12,27 (labile attention and excessive
strategy switches).

Neural correlates and model generalization

Although our results suggest that norepinephrine influences perfor-
mance accuracy and future reward discounting, it certainly cannot be
excluded that other neuromodulators are important in these processes.
For example, serotonin26,33 and dopamine D2 receptors34 have been
implicated in impulsivity and control of reward discounting. Notably,
DBA/2 mice, whose reward discount factors were lower than those of
C57BL/6 mice, are known to have reduced expression of D2 receptors
in nucleus accumbens35. As neuromodulatory systems are known to
interact with each other36, the effect of norepinephrine increase on
future reward discounting may not be direct, but may instead be
mediated through interactions with other neuromodulators, such as
serotonin and dopamine.

The basis of our hole-box behavioral prediction is a simple reinfor-
cement-learning model with discrete states and actions. The described
effects of modulatory factors on model metaparameters are not only
useful for the hole-box experiment, but are likely to generalize; in a
different experiment in which we studied the role of stress timing
(unpublished observations), most effects were qualitatively the same.
Although it is not obvious that such a model could predict animal
behavior in substantially more complex tasks, inferences from meta-
parameter estimation are probably more general; when we performed
metaparameter estimation for different models of five hole-box and
Morris water maze tasks, most of the resulting dynamics were similar
across the two experiments37. Even more complex behavioral and
decision-making models are likely to have a reinforcement learning-
like module; therefore, a similar method could be applied for con-
trolling its metaparameters on the basis of numerous modulatory
influences. Further studies relating such metaparameters to other
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neuromodulatory systems and activation patterns of specific brain
areas could provide interesting insights and would be an ultimate test
box for the biological relevance of such an approach.

Finally, if we are capable of predicting most important aspects of
individual behavior, we can ask a reverse question: given knowledge
about the individual phenotype, under which environmental condi-
tions (such as stress, motivation and uncertainty) would it be possible
to achieve the desired behavior? If a method answering such question
were applied to humans in practical situations, this could be of great
use for everyone. We believe that our study is a first important step
toward this goal.

METHODS

Methods and any associated references are available in the online
version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Animals, materials and licenses. All experiments were approved by the

veterinary commission of Canton de Vaud and carried out in accordance

with Swiss animal care regulations. Mice were provided by Charles River

Laboratories and pharmacological agents by Sigma Aldrich. Hole-box equip-

ment and software came from TSE Systems. Model simulations were performed

using C/C++ (GNU Compiler Collection) and statistical analyses using

MATLAB (MathWorks).

Experimental protocol The experimental subjects were 64 male mice (32 of

C57BL/6 strain and 32 of DBA/2 strain) that were 10-weeks-old at the beginning

of the experiment. During each 500-s-long session, each mouse was placed into

the hole box. The mice had to learn to make a nose poke into the hole on the

onset of lights (and not under the condition of no light). After a response to

light, the mice received a reward in the form of a food pellet and the light was

switched off, marking the end of a trial. The ITI duration was varying; the

probability of starting a new trial during each 0.5-s-long time step was 1/30,

resulting in the average ITI of 15 s.

During 2 d of habituation, food delivery was not paired with light (mice

were given ten pellets per session at arbitrary times). After habituation, they

were trained for 8 consecutive days. Half of the mice were exposed to extrinsic

stress (30 min on 11 cm � 11 cm platform, elevated 90 cm above the ground)

before each training session. On training days 3, 6 and 8, we injected mice

intraperitoneally (5 ml per kg of body weight) 30 min before the experimental

session with either saline (16 mice of each strain), the adrenergic alpha-2

receptor agonist clonidine (eight mice of each strain, 0.05 mg per kg), which

reduces brain norepinephrine levels28, or the adrenergic alpha-2 receptor

antagonist yohimbine (eight mice of each strain, 1 mg per kg), which increases

brain norepinephrine levels28. The drug doses were selected on the basis of

previous studies28,38.

After a 26-d break, the mice performed the task for another 5 d. To evaluate

the effects of stress and strain on long-term memories, groups 1–6 (Supple-

mentary Table 3) were not exposed to stress on recall days 1–3. On recall day 4,

stress was applied to groups that received it during training to check whether

performance of trained mice was sensitive to a sudden change in stress. To

study the role of stress memories in modulating recall performance, we stressed

groups 7 and 8 during recall days 1–3 and 5. In this manner, we could compare

four different conditions, [training stress versus no stress]� [recall stress versus

no stress].

Statistical procedures. To compare the values of a selected performance

measure or a metaparameter between two groups, we used two-way ANOVA

with repeated measures, where the within subjects factor was experimental day

and the between subjects factor was experimental group. If the within subjects

factor yielded significance, we tested whether the values increased or decreased

with time using Pearson correlation analysis between the variable of interest

and the corresponding days. To determine whether a performance measure

changed significantly after the break, we compared group values between the

last day of training and the first day of recall using the paired Student’s t test.

Significance was accepted at P o 0.05.

To evaluate the influence of graded modulatory factors, we performed

multilinear regressions with the following inputs: strain (0 for C57BL/6, 1

for DBA/2), anxiety (fraction of time outside the center of the open field; see

Supplementary Methods), novelty reactivity (fraction of time in the zone near

a novel object), prior stress (0 or 1), stress expectation (average stress

experienced during all previous experimental days, 0 for the first day), food

deprivation (percentage loss of mouse weight), norepinephrinergic manipula-

tion (–1 for norepinephrine reduction, 1 for norepinephrine increase, 0 for

control), experimental day and prior rewards (the number of food pellets eaten

on the previous day) and misses (the number of nose pokes during which no

food was consumed). The dependent variables were metaparameters a, b and

g. All variables were normalized to zero mean and unit variance before

performing the regression.

We also used partial regression models that only included data of a certain

strain and/or stress group. This was the best way to study the interactions

between graded factors and strain or stress. Using higher-order interaction

terms in the full regression was not practical because the results would depend

on which terms were included, whereas including all second-order terms would

cause the model to have too many parameters, leading to poor generalization.

Implementation of the reinforcement learning model. We used a simple

temporal difference model to formalize mouse behavior. Conceptually, the

model consisted of four states, [ITI, trial] � [outside, nose poke], and two

actions, move (in or out) and stay. To make the model’s performance realistic,

we introduced several extensions (see Supplementary Discussion and Supple-

mentary Fig. 10). First, the outside state was divided into six states corre-

sponding to different places in the box that the mouse could occupy, adding

actions for the transitions between these new states. Second, when mice made

trial responses that were too short, they often could not pick up the delivered

food. Conversely, when the nose pokes were longer than 1.5 s, mice usually

picked up the delivered pellet. To account for this, we divided the nose poke

state into five states, representing different nose poke durations, with increasing

probability of picking up the reward (for simplicity, we chose a linear increase,

from P ¼ 0.2 for the first state to P ¼ 1.0 for the fifth). A food pellet was

delivered at the start of each trial response, irrespective of whether the mouse

picked it up subsequently or not. Unconsumed pellets could be eaten during

later (sufficiently long) ITI nose pokes.

Qðst ; atÞ ¼ E½rt + grt + 1 + g2rt + 2 + . . . st ; atj � ð1Þ

The Q values (equation 1) estimate the total reward that can be gained

from state st by choosing action at (rt is the reward at time t, g is the reward

discount factor and E[y] denotes the expected value averaged over all possible

outcomes). In analogy to offline temporal difference learning algorithms14, the

Q values were updated by

DQ st ; atð Þ ¼ a � p st ; atð Þ
(

E rt½ � � Q st ; atð Þ

+ g
X

8st + 1;at + 1

Q st + 1; at + 1ð Þp st + 1; at + 1jst ; atð Þ
) ð2Þ

where a is the learning rate and E[rt] the expected reward at time t, given state

and action probabilities p st ; atð Þ. If p st ; atð Þ , p st + 1; at + 1 st ; atjð Þ and E[rt] were

replaced with stochastic state, action and reward sampling, this rule would

become analogous to SARSA, an online temporal difference learning rule

(equation 6). The state and action probabilities p s; að Þ were determined on

the basis of Q values and b.

pðs; aÞ ¼ pðsÞpða j sÞ ¼ pðsÞ exp b � Qðs; aÞð ÞP
ak

exp b � Qðs; akÞð Þ ð3Þ

The sum runs over actions ak, accessible from state s.

The starting state on each day was outside, near the hole. Q values were

initialized at zero before the first training day. To simulate forgetting during the

break of 26 d, we updated all of the Q values as follows:

Qnew s; að Þ ¼ Qold s; að Þ � 1� eð Þ+ Qold s; að Þh is;ae ð4Þ

where e is a memory decay factor and Qold s; að Þh is;a is the average of values

Qold(s,a) before the break over all states and actions.

A single mouse performs only one action sequence; therefore the results

obtained using the update rule in equation 2 indicate how a mean statistical

mouse would perform under particular known circumstances. Thus, we could

not predict arbitrary individual variability, but we could account for the effects

of modulatory factors. We also found that simulating single action sequences

over the entire experiment using the SARSA update rule14 (equation 6) and

averaging performance measures obtained from such multiple simulations led

to comparable results.

Metaparameter estimation based on fit to behavioral data. In two-choice

sequential decision-making tasks24–26, model performance is typically com-

pared with subject’s behavior by directly matching the chosen actions (for

example, by using a maximum likelihood criterion). In our study, mouse

behavior was modeled using a large number of actions, some of which (for

example, making a nose poke) were more behaviorally relevant than others.
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This led to a large number of possible action sequences that could not be all

explored. Therefore, we used a different approach: we compared model

performance with mouse behavior on the basis of seven performance measures

that describe mouse behavior during a single session.

To compare our model with mouse behavior we used the following good-

ness-of-fit function39:

w2 ¼
X7

k¼ 1

PM
exp
k � PMmod

k metaparametersð Þ
� �2

sexp
k

� �2 ð5Þ

where metaparameters indicate a, b, g and (for recall day 1) e; PM
exp
k and

PMmod
k are the performance measures calculated for each mouse (or each

subgroup) and the model, respectively, and sexp
k

� �2
is the variance in the

experimental data of PM
exp
k . PMmod

k was calculated after simulating the model

for one session with fixed metaparameters. To evaluate whether our model is

sufficiently flexible to fit various mouse behaviors, we performed an estimation

procedure of daily metaparameters. For each session, we first generated

50 random sets (a, g and e in the range of [0.03, 0.99] and b in the range of

[10–1.0, 101.5]), of which the 15 sets with the lowest w2-values were selected

for stochastic gradient ascent. We then performed steps of different sizes

(4% and 20% of the range) along each metaparameter to further decrease

the w2 values, terminating the procedure when no step resulted in improve-

ment. To evaluate how well the model fits the experimental data, we used

the w2 test with n ¼ 7–3 ¼ 4 degrees of freedom, as our model has three

metaparameters (except for the first recall day, when it also has e). For each

session, we calculated the P w2; nð Þ value, defined as the probability that a

realization of a w2-distributed random variable would exceed w2. Values of

P w2; nð Þ 4 0.01 were necessary to pass the w2 test39.

In addition to using individual mouse data for metaparameter estimation,

averages of subgroups containing pairs of mice in each group (1 and 2, 1 and 3,

1 and 4, 2 and 3, 2 and 4, 3 and 4), triplets of mice (1, 2 and 3, 1, 2 and 4, 1, 3

and 4, 2, 3 and 4), or the whole group were used for reducing intra-group

variability and testing the robustness of estimation procedure. To take into

account uncertainty in metaparameter estimation, that is, whether only a single

set of metaparameters was the best or several very different sets were similarly

good, we performed all statistics (Supplementary Tables 1 and 2) using either

the single set with the best w2 value or the end points of the five best gradient

ascent runs from different starting points.

ANN for metaparameter prediction. To predict reinforcement-learning meta-

parameters on the basis of modulatory factors, we trained an ANN, whose

inputs included the same information as in multilinear regression and outputs

were the predicted values of a, b and g. To avoid over-fitting, the ANN had only

four hidden layer units. Its target outputs were the daily estimated metapara-

meter sets. After normalizing the inputs and the targets to zero mean and unit

variance, the network was trained using the Levenberg-Marquardt method40.

Because of the normalization, the resulting MSEs indicated how much variance

in the metaparameters could not be explained by the ANN. For stability

purposes, we trained 20 separate ANNs and used their averaged output for

predicting the metaparameters.

After training the network, we performed simulations to analyze how

different input factors affect each metaparameter and to discover interactions

between factors. We simulated the ANN 1,000,000 times, linearly varying one

or two selected inputs in their range, while all other inputs were given random

values with the same statistical distributions as in the input data.

Evaluation of SARSA model performance. Our temporal difference model,

used for metaparameter estimation, was intended to simulate a mean statistical

mouse, as, in updating our Q values, we considered probabilities of states and

actions and expected values of rewards instead of individual state-action-

reward sequences. To show that simulating individual sequences for the entire

experiment and averaging the resulting performance measures produced a

similar result, we simulated our model using metaparameters predicted by the

ANN and updating the Q values according to the SARSA rule14.

DQ st ; atð Þ ¼ a rt + gQ st + 1; at + 1ð Þ � Q st ; atð Þ½ � ð6Þ

On the basis of the resulting state-action-reward sequences, we calculated the

performance measures and averaged them across 10,000 runs. We then used the

w2 test to determine how well the performance of such a model fits individual

mouse behavior.

38. Samini, M., Kardan, A. & Mehr, S.E. Alpha-2 agonists decrease expression of morphine-
induced conditioned place preference. Pharmacol. Biochem. Behav. 88, 403–406
(2008).

39. Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T. Numerical Recipes in C:
The Art of Scientific Computing (Cambridge University Press, Cambridge, UK, 1992).

40. Marquardt, D. An algorithm for least squares estimation of nonlinear parameters. SIAM
J. Appl. Math. 11, 431–441 (1963).
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Erratum: Stress, genotype and norepinephrine in the prediction  
of mouse behavior using reinforcement learning
Gediminas Luksys, Wulfram Gerstner & Carmen Sandi
Nat. Neurosci. 12, 1180–1186 (2009); corrected online 26 August 2009

In the version of this article originally posted online, the range for β in the Online Methods section ‘Metaparameter estimation based on 
fit to behavioral data’ was given as [10–1.0, 10–1.5]. It should have been [10–1.0, 101.5]. The error has been corrected in the PDF and HTML 
versions of this article.
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