Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Integrated biosensing for diagnosis and therapy
 
conference paper not in proceedings

Integrated biosensing for diagnosis and therapy

De Micheli, Giovanni  
2011
4th Annual World Congress of Industrial Biotechnology (ibio-2011)

Monitoring human metabolism is of crucial importance for personalized medicine. Many metabolic diseases can be treated by controlling various endogenous metabolites (e.g., glucose, lactate, cholesterol, etc.). Similarly, measuring the metabolism of exogenous compounds (e.g., etoposide, ftorafur, cyclophospamide, etc.) can enhance the effectiveness of a therapy as applied to the individual patient, since the response rate of different patients to the same pharmacological treatment and dose typically varies widely. The objective of this work is the systematic study of the use of electrochemical readout for advanced diagnosis and drug monitoring. Whereas to date various electrochemical principles have been studied and successfully tested, they typically operate on a single target molecule and are not integrated in a full data measurement and analysis chain. Our work addresses simultaneous multi-target detection as well as full integration of biosensors and readout electronics in silicon-based realizations that can be implanted in animals and humans. Our sensors exploit as probes both the protein class of oxidases - for sensing endogenous metabolites - and cytochromes P450 - for sensing drug compounds. We fabricated nanostructured electrodes that use carbon nanotubes (CNT) as intermediary between the probes and the electrodes to achieve higher sensitivity and lower detection limit and we developed circuits for in-situ data analysis. We developed an integrated platform to support multiple applications within the same architecture, thus extending the scope of utilization of the biosensing analysis chain.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

dalian.pdf

Access type

openaccess

Size

70.21 KB

Format

Adobe PDF

Checksum (MD5)

f118da587a9b6775615a4919850b5e3e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés