Journal article

Descent properties of hermitian Witt groups in inseparable extensions

Let k be a field of characteristic ≠2, A be a central simple algebra with involution σ over k and W(A,σ) be the associated Witt group of hermitian forms. We prove that for all purely inseparable extensions L of k, the canonical map rL/k:W(A,σ)⟶W(AL,σL) is an isomorphism.

Related material