Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Surface Construction by a 2-D Differentiation-Integration Process: A Neurocomputational Model for Perceived Border Ownership, Depth, and Lightness in Kanizsa Figures
 
research article

Surface Construction by a 2-D Differentiation-Integration Process: A Neurocomputational Model for Perceived Border Ownership, Depth, and Lightness in Kanizsa Figures

Kogo, Naoki
•
Strecha, Christoph  
•
Van Gool, Luc
Show more
2010
Psychological Review

Human visual perception is a fundamentally relational process: Lightness perception depends on luminance ratios, and depth perception depends on occlusion (difference of depth) cues. Neurons in low-level visual cortex are sensitive to the difference (but not the value itself) of signals, and these differences have to be used to reconstruct the input. This process can be regarded as a 2-dimensional differentiation and integration process: First, differentiated signals for depth and lightness are created at an earlier stage of visual processing and then 2-dimensionally integrated at a later stage to construct surfaces. The subjective filling in of physically missing parts of input images (completion) can be explained as a property that emerges from this surface construction process. This approach is implemented in a computational model, called DISC (Differentiation-Integration for Surface Completion). In the DISC model, border ownership (the depth order at borderlines) is computed based on local occlusion cues (L- and T-junctions) and the distribution of borderlines. Two-dimensional integration is then applied to construct surfaces in the depth domain, and lightness values are in turn modified by these depth measurements. Illusory percepts emerge through the surface-construction process with the development of illusory border ownership and through the interaction between depth and lightness perception. The DISC model not only produces a central surface with the correctly modified lightness values of the original Kanizsa figure but also responds to variations of this figure such that it can distinguish between illusory and nonillusory configurations in a manner that is consistent with human perception.

  • Details
  • Metrics
Type
research article
DOI
10.1037/a0019076
Web of Science ID

WOS:000276928600004

Author(s)
Kogo, Naoki
Strecha, Christoph  
Van Gool, Luc
Wagemans, Johan
Date Issued

2010

Published in
Psychological Review
Volume

117

Start page

406

End page

439

Subjects

illusory contours

•

surface completion

•

depth perception

•

lightness/brightness perception

•

neural computation

•

Monkey Visual-Cortex

•

Illusory Contours

•

Subjective Contours

•

Ground Separation

•

Neural Dynamics

•

Filling-In

•

Area V2

•

Psychophysical Evidence

•

Perceptual Completion

•

Spatial Arrangement

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CVLAB  
Available on Infoscience
December 16, 2011
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/75567
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés