We have demonstrated theoretically that it is possible to use the resonant coupling of exciton-polaritons in a planar microcavity and Tamm plasmons at a metal film on the surface of the structure to provide lateral spatial control of the exciton-polaritons within the cavity. The resonant coupling of the Tamm plasmons to cavity exciton-polaritons results in a triplet of hybrid plasmon-exciton-polariton modes with the lowest at a significantly lower energy than that of the unperturbed exciton-polaritons. Further, a patterned metal film on the structure surface can provide a sufficiently large lateral modulation of the excitation energy that localization of the exciton-polaritons within chosen regions of the cavity is possible. We show how the approach opens the way to a practical demonstration of polariton channels, traps, and devices, including logic gates. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.