000171040 001__ 171040
000171040 005__ 20181203022524.0
000171040 0247_ $$2doi$$a10.1002/fld.2103
000171040 02470 $$2ISI$$a000294220600002
000171040 037__ $$aARTICLE
000171040 245__ $$aNumerical capture of wing tip vortex improved by mesh adaptation
000171040 269__ $$a2011
000171040 260__ $$c2011
000171040 336__ $$aJournal Articles
000171040 520__ $$aThis paper presents a mesh adaptation procedure linked to a finite volume solver, the goal of which is to increase the precision of the numerical simulation of a wing tip vortex flow. The adaptation scheme is applied to hexahedron meshes and hybrid meshes made up of tetrahedrons and prisms. To evaluate the ability of each type of element to capture the physics of a tip vortex, a specific test case is studied and results obtained numerically from this test case are compared with experimental results. The error estimator of the adaptation scheme is derived from a solution scalar variable. It is shown that the element anisotropy as well as the adaptation algorithms used have an impact on the precision of the solution. Adaptation of hexahedrons allows a better capture of the tip vortex far from the vortex root, even though the adaptation of those hexahedrons barely changes the number of nodes used to achieve a specified precision, contrary to the adaptation of hybrid meshes. Copyright (C) 2009 John Wiley & Sons, Ltd.
000171040 6531_ $$amesh adaptation
000171040 6531_ $$aanisotropy
000171040 6531_ $$ametric
000171040 6531_ $$ahybrid meshes
000171040 6531_ $$atip vortex
000171040 6531_ $$afinite volumes
000171040 700__ $$aJoubarne, E.
000171040 700__ $$aGuibault, F.
000171040 700__ $$aBraun, O.
000171040 700__ $$g104417$$aAvellan, F.$$0241012
000171040 773__ $$j67$$tInternational Journal For Numerical Methods In Fluids$$q8-32
000171040 909C0 $$xU10309$$0252135$$pLMH
000171040 909CO $$pSTI$$particle$$ooai:infoscience.tind.io:171040
000171040 917Z8 $$x102085
000171040 937__ $$aEPFL-ARTICLE-171040
000171040 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000171040 980__ $$aARTICLE