Femtosecond UV Studies of the Electronic Relaxation Processes in Cytochrome c

We report on an experimental study with UV and visible ultrafast time-gated emission and transient absorption of the early photodynamics of horse heart Cytochrome c in both ferric and ferrous redox states. A clear separation in time and energy of tryptophan and haem emission is observed. Excitation of the haem via resonant energy transfer from the tryptophan residue is observed in the subsequent haem electronic relaxation. Different Trp haem energy transfer time constants of the ferrous and ferric forms are obtained. An almost instantaneous relaxation to the lowest singlet excited state (corresponding to the so-called Q band) characterizes the earliest electronic dynamics of the haem, independent of excitation energy, while dark intermediate states govern the ground-state recovery. The information gathered in these two experiments and in the literature allows us to propose a simple scheme for electronic relaxation leading to ligand dissociation.

Published in:
Journal of Physical Chemistry B, 115, 13723-13730

Note: The status of this file is: EPFL only

 Record created 2011-12-16, last modified 2018-09-13

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)