Powered wheelchair users often struggle to drive safely and effectively and in more critical cases can only get around when accompanied by an assistant. To address these issues, we propose a collaborative control mechanism that assists the user as and when they require help. The system uses a multiple–hypotheses method to predict the driver’s intentions and if necessary, adjusts the control signals to achieve the desired goal safely. The main emphasis of this paper is on a comprehensive evaluation, where we not only look at the system performance, but, perhaps more importantly, we characterise the user performance, in an experiment that combines eye–tracking with a secondary task. Without assistance, participants experienced multiple collisions whilst driving around the predefined route. Conversely, when they were assisted by the collaborative controller, not only did they drive more safely, but they were able to pay less attention to their driving, resulting in a reduced cognitive workload. We discuss the importance of these results and their implications for other applications of shared control, such as brain–machine interfaces, where it could be used to compensate for both the low frequency and the low resolution of the user input.